Skip to main content
Top
Published in: Archive of Applied Mechanics 6/2020

07-03-2020 | Original

Bifurcation of nonlinear normal modes of a cantilever beam under harmonic excitation

Authors: Lokanna Hoskoti, Ajay Misra, Mahesh M. Sucheendran

Published in: Archive of Applied Mechanics | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bifurcation analysis of the nonlinear vibration of an inextensible cantilever beam is analyzed by using the nonlinear normal mode concept. Two flexural modes of the cantilever beam, one in each transverse plane is considered. Two degrees-of-freedom nonlinear model for the vibration in the transverse direction is obtained by the discretization of the governing equation using Galerkins method based on the eigenmodes in each direction. The method of multiple scales is used to derive two first-order nonlinear ordinary differential equations governing the modulation of the amplitude and the phase of the dominant mode for the case of 1:1 internal resonance. The bifurcation diagrams are computed considering the frequency of excitation and the magnitude of the excitation as the control parameters. The stability of the fixed point is determined by examining the eigenvalues of the Jacobian matrix. The results show that a saddle-node-type bifurcation of the solution can occur under certain parameter conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agnes, G., Inman, D.: Performance of nonlinear vibration absorbers for multidegrees-of-freedom systems using nonlinear normal modes. Nonlinear Dyn. 25, 275292 (2001)CrossRef Agnes, G., Inman, D.: Performance of nonlinear vibration absorbers for multidegrees-of-freedom systems using nonlinear normal modes. Nonlinear Dyn. 25, 275292 (2001)CrossRef
2.
go back to reference Avramov, K., Mikhlin, V.: Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev. 65(2), 177–206 (2013)CrossRef Avramov, K., Mikhlin, V.: Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev. 65(2), 177–206 (2013)CrossRef
3.
go back to reference da Silva, Crespo, Glynn, C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams—II: forced motions. J. Struct. Mech. 6, 449–461 (1978)CrossRef da Silva, Crespo, Glynn, C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams—II: forced motions. J. Struct. Mech. 6, 449–461 (1978)CrossRef
4.
go back to reference da Silva, Crespo, Glynn, C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams-I: equation of motion. J. Struct. Mech. 6(1–12), 437–448 (1978)CrossRef da Silva, Crespo, Glynn, C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams-I: equation of motion. J. Struct. Mech. 6(1–12), 437–448 (1978)CrossRef
5.
go back to reference Fengxia, W., Bajaj, A., Kamiya, K.: Nonlinear normal modes and their bifurcations for an inertially coupled nonlinear conservative system. Nonlinear Dyn. 42(3), 233–265 (2005)MathSciNetMATHCrossRef Fengxia, W., Bajaj, A., Kamiya, K.: Nonlinear normal modes and their bifurcations for an inertially coupled nonlinear conservative system. Nonlinear Dyn. 42(3), 233–265 (2005)MathSciNetMATHCrossRef
6.
go back to reference Haider, A.: Nonlinear response of cantilever beams. Ph.D. thesis, Virginia Tech, Blacksburg, VA, USA (1999) Haider, A.: Nonlinear response of cantilever beams. Ph.D. thesis, Virginia Tech, Blacksburg, VA, USA (1999)
7.
go back to reference Haider, A., Nayfeh, A., Chin, C.: Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn. 15(1), 31–61 (1998)MATHCrossRef Haider, A., Nayfeh, A., Chin, C.: Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn. 15(1), 31–61 (1998)MATHCrossRef
8.
go back to reference Hodges, D., Pierce, G.: Introduction to Structural Dynamics and Aeroelasticity, vol. 15. Cambridge University Press, Cambridge (2011)CrossRef Hodges, D., Pierce, G.: Introduction to Structural Dynamics and Aeroelasticity, vol. 15. Cambridge University Press, Cambridge (2011)CrossRef
9.
go back to reference Huo, Y., Wang, Z.: Dynamical stability of the cantilever beam with oscillating length. Arch. Appl. Mech. 87(8), 1281–1293 (2017)CrossRef Huo, Y., Wang, Z.: Dynamical stability of the cantilever beam with oscillating length. Arch. Appl. Mech. 87(8), 1281–1293 (2017)CrossRef
10.
go back to reference Kerschen, G., Peeters, M., Golinval, J., Stéphan, C.: Nonlinear modal analysis of a full-scale aircraft. J. Aircr. 50(5), 1409–1419 (2013)CrossRef Kerschen, G., Peeters, M., Golinval, J., Stéphan, C.: Nonlinear modal analysis of a full-scale aircraft. J. Aircr. 50(5), 1409–1419 (2013)CrossRef
11.
go back to reference Kerschen, G., Peeters, M., Golinval, J., Vakakis, A.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)CrossRef Kerschen, G., Peeters, M., Golinval, J., Vakakis, A.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)CrossRef
12.
go back to reference Kerschen, G., Shaw, S., Touzé, C., Gendelman, O., Cochelin, B., Vakakis, A.: Modal Analysis of Nonlinear Mechanical Systems. CIMS Book Series. Springer, Berlin (2014)CrossRef Kerschen, G., Shaw, S., Touzé, C., Gendelman, O., Cochelin, B., Vakakis, A.: Modal Analysis of Nonlinear Mechanical Systems. CIMS Book Series. Springer, Berlin (2014)CrossRef
13.
go back to reference King, M., Vakakis, A.: An energy-based formulation for computing nonlinear normal modes in undamped continuous systems. J. Vib. Acoust. 116(3), 332–340 (1994)CrossRef King, M., Vakakis, A.: An energy-based formulation for computing nonlinear normal modes in undamped continuous systems. J. Vib. Acoust. 116(3), 332–340 (1994)CrossRef
14.
go back to reference Krack, M., Panning-von Scheidt, L., Wallaschek, J.: A method for nonlinear modal analysis and synthesis: application to harmonically forced and self-excited mechanical systems. J. Sound Vib. 332(25), 6798–6814 (2013)CrossRef Krack, M., Panning-von Scheidt, L., Wallaschek, J.: A method for nonlinear modal analysis and synthesis: application to harmonically forced and self-excited mechanical systems. J. Sound Vib. 332(25), 6798–6814 (2013)CrossRef
15.
go back to reference Kuether, R., Renson, L., Detroux, T., Grappasonni, C., Kerschen, G., Allen, M.: Nonlinear normal modes, modal interactions and isolated resonance curves. J. Sound Vib. 351, 299–310 (2015)CrossRef Kuether, R., Renson, L., Detroux, T., Grappasonni, C., Kerschen, G., Allen, M.: Nonlinear normal modes, modal interactions and isolated resonance curves. J. Sound Vib. 351, 299–310 (2015)CrossRef
16.
go back to reference Le, Y., Chen, H.: Bifurcation of nonlinear normal modes by means of Synge’s stability. In: ASME-International Design Engineering Technical Conferences, pp. 647–653 (2011) Le, Y., Chen, H.: Bifurcation of nonlinear normal modes by means of Synge’s stability. In: ASME-International Design Engineering Technical Conferences, pp. 647–653 (2011)
17.
go back to reference Lee, W., Lee, K., Pak, C.: Stability analysis for nonplanar free vibrations of a cantilever beam by using nonlinear normal modes. Nonlinear Dyn. 52(3), 217–225 (2008)MathSciNetMATHCrossRef Lee, W., Lee, K., Pak, C.: Stability analysis for nonplanar free vibrations of a cantilever beam by using nonlinear normal modes. Nonlinear Dyn. 52(3), 217–225 (2008)MathSciNetMATHCrossRef
18.
go back to reference Malatkar, P.: Nonlinear vibrations of cantilever beams and plates. Ph.D. thesis, Virginia Tech, Blacksburg, VA, USA (2003) Malatkar, P.: Nonlinear vibrations of cantilever beams and plates. Ph.D. thesis, Virginia Tech, Blacksburg, VA, USA (2003)
19.
go back to reference Manevitch, L., Mikhlin, Y., Pilipchuk, V., Vakakis, A.: Normal Modes and Localization in Nonlinear Systems. Kluwer Academic Publishers, Dordrecht (2001)MATH Manevitch, L., Mikhlin, Y., Pilipchuk, V., Vakakis, A.: Normal Modes and Localization in Nonlinear Systems. Kluwer Academic Publishers, Dordrecht (2001)MATH
20.
21.
go back to reference Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, Hoboken (2008)MATH Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, Hoboken (2008)MATH
22.
go back to reference Noël, J., Renson, L., Grappasonni, C., Kerschen, G.: Identification of nonlinear normal modes of engineering structures under broadband forcing. Mech. Syst. Signal Process. 74, 95–110 (2016)CrossRef Noël, J., Renson, L., Grappasonni, C., Kerschen, G.: Identification of nonlinear normal modes of engineering structures under broadband forcing. Mech. Syst. Signal Process. 74, 95–110 (2016)CrossRef
23.
24.
go back to reference Pak, C., Shin, H.: On bifurcation modes and forced responses in coupled nonlinear oscillators. J. Korea Soc. Ind. Appl. Math. 1(1), 29–67 (1995) Pak, C., Shin, H.: On bifurcation modes and forced responses in coupled nonlinear oscillators. J. Korea Soc. Ind. Appl. Math. 1(1), 29–67 (1995)
25.
go back to reference Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)CrossRef Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)CrossRef
26.
go back to reference Rand, R., Pak, C., Vakakis, A.: Bifurcation of nonlinear normal modes in a class of two degree of freedom systems. Acta Mech. 3(1), 129–45 (1992)MATH Rand, R., Pak, C., Vakakis, A.: Bifurcation of nonlinear normal modes in a class of two degree of freedom systems. Acta Mech. 3(1), 129–45 (1992)MATH
27.
go back to reference Renson, L., Deliége, G., Kerschen, G.: An effective finite-element-based method for the computation of nonlinear normal modes of nonconservative systems. Meccanica 49(8), 1901–1916 (2014)MathSciNetMATHCrossRef Renson, L., Deliége, G., Kerschen, G.: An effective finite-element-based method for the computation of nonlinear normal modes of nonconservative systems. Meccanica 49(8), 1901–1916 (2014)MathSciNetMATHCrossRef
28.
go back to reference Renson, L., Kerschen, G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 364, 177–206 (2016)CrossRef Renson, L., Kerschen, G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 364, 177–206 (2016)CrossRef
29.
go back to reference Renson, L., Noël, J., Kerschen, G.: Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes. Nonlinear Dyn. 79(2), 1293–1309 (2015)CrossRef Renson, L., Noël, J., Kerschen, G.: Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes. Nonlinear Dyn. 79(2), 1293–1309 (2015)CrossRef
30.
go back to reference Rosenberg, R.: On nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 9, 155–242 (1966)CrossRef Rosenberg, R.: On nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 9, 155–242 (1966)CrossRef
31.
go back to reference Shaw, S., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85–124 (1993)MATHCrossRef Shaw, S., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85–124 (1993)MATHCrossRef
32.
go back to reference Shaw, S., Pierre, C., Pesheck, E.: Modal analysis-based reduced-order models for nonlinear structures: an invariant manifold approach. Shock Vib. 96–1250, 385–405 (1999) Shaw, S., Pierre, C., Pesheck, E.: Modal analysis-based reduced-order models for nonlinear structures: an invariant manifold approach. Shock Vib. 96–1250, 385–405 (1999)
33.
go back to reference Thomsen, J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer, Berlin (2013) Thomsen, J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer, Berlin (2013)
34.
go back to reference Tiaki, M., Hosseini, S., Zamanian, M.: Nonlinear forced vibrations analysis of overhung rotors with unbalanced disk. Arch. Appl. Mech. 86(5), 797–817 (2016)CrossRef Tiaki, M., Hosseini, S., Zamanian, M.: Nonlinear forced vibrations analysis of overhung rotors with unbalanced disk. Arch. Appl. Mech. 86(5), 797–817 (2016)CrossRef
35.
go back to reference Vakakis, A.: Nonlinear normal modes and their applications in vibration theory: an overview. Mech. Syst. Signal Process. 11(1), 3–22 (1997)CrossRef Vakakis, A.: Nonlinear normal modes and their applications in vibration theory: an overview. Mech. Syst. Signal Process. 11(1), 3–22 (1997)CrossRef
36.
go back to reference Vakakis, A., Rand, R.: Normal modes and global dynamics of a two-degree-of-freedom non-linear system-I. Low energies. Int. J. Non-Linear Mech. 27(5), 861–874 (1992)MATHCrossRef Vakakis, A., Rand, R.: Normal modes and global dynamics of a two-degree-of-freedom non-linear system-I. Low energies. Int. J. Non-Linear Mech. 27(5), 861–874 (1992)MATHCrossRef
37.
go back to reference Vakakis, A., Rand, R.: Normal modes and global dynamics of a two-degree-of-freedom non-linear system-II. High energies. Int. J. Non-Linear Mech. 27(5), 875–888 (1992)MATHCrossRef Vakakis, A., Rand, R.: Normal modes and global dynamics of a two-degree-of-freedom non-linear system-II. High energies. Int. J. Non-Linear Mech. 27(5), 875–888 (1992)MATHCrossRef
38.
go back to reference Xiaowu, F., Zhanming, Q.: Modal interactions in a geometrically nonlinear cantilevered beam. In: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp. 1–15 (2011) Xiaowu, F., Zhanming, Q.: Modal interactions in a geometrically nonlinear cantilevered beam. In: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp. 1–15 (2011)
39.
go back to reference Xie, L., Baguet, S., Prabel, B., Dufour, R.: Bifurcation tracking by harmonic balance method for performance tuning of nonlinear dynamical systems. Mech. Syst. Signal Process. 88, 445–461 (2017)CrossRef Xie, L., Baguet, S., Prabel, B., Dufour, R.: Bifurcation tracking by harmonic balance method for performance tuning of nonlinear dynamical systems. Mech. Syst. Signal Process. 88, 445–461 (2017)CrossRef
40.
go back to reference Yu, W., Chen, F., Li, N., Wang, T., Zhao, S.: Stability and bifurcation dynamics for a nonlinear controlled system subjected to parametric excitation. Arch. Appl. Mech. 87(3), 479–487 (2017)CrossRef Yu, W., Chen, F., Li, N., Wang, T., Zhao, S.: Stability and bifurcation dynamics for a nonlinear controlled system subjected to parametric excitation. Arch. Appl. Mech. 87(3), 479–487 (2017)CrossRef
Metadata
Title
Bifurcation of nonlinear normal modes of a cantilever beam under harmonic excitation
Authors
Lokanna Hoskoti
Ajay Misra
Mahesh M. Sucheendran
Publication date
07-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 6/2020
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01647-5

Other articles of this Issue 6/2020

Archive of Applied Mechanics 6/2020 Go to the issue

Premium Partners