Skip to main content
Top

2016 | OriginalPaper | Chapter

5. Binomial Trees and Security Pricing Modeling

Authors : Arlie O. Petters, Xiaoying Dong

Published in: An Introduction to Mathematical Finance with Applications

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We introduce a discrete-time model of a risky security’s future price using a binomial tree. By increasing the number of time-steps in the tree, the assumption is that one obtains a more and more accurate model of the random future price of a security. This chapter covers: the general binomial tree model of future security prices, the Cox-Ross-Rubinstein (CRR) tree in the real world and risk-neutral world, the Lindeberg Central Limit Theorem with applications to the continuous-time limit of the CRR tree, and statistical and probability formulas for continuous-time security prices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
For readers familiar with measure theory, it suffices for the functions f and g to be measurable, which includes the continuous functions. In fact, all the functions you will encounter in our financial applications are measurable. Some measure theory will be introduced in Chapter 6
 
2
Proof. \(\mathbb{P}(f(X) \in A,\ g(Y ) \in B) = \mathbb{P}(X \in f^{-1}(A),\ Y \in g^{-1}(B)) = \mathbb{P}(X \in f^{-1}(A))\ \mathbb{P}(Y \in g^{-1}(B)) = \mathbb{P}(f(X) \in A)\ \mathbb{P}(g(Y ) \in B)\), where the independence of X and Y was used in the second to the last equality.
 
3
Strictly speaking, we are considering the conditional expectation \(\mathbb{E}\left (S(t_{1})\vert S(t_{0}) = S_{0}\right ) \approx S_{0}\,\mathrm{e}^{(m-q)\,h_{n}}\) for n sufficiently large.
 
4
We remind readers to be mindful of the usage of the terminology real world; see the introductory paragraph to this section on page 219.
 
5
See page 19.
 
6
Recall that it is essentially impossible to determine a reliable value for m in the marketplace.
 
7
Recall that \(\mathsf{r}\) is the risk-free rate per annum (by default).
 
8
Theorem. (Classical CLT) Assume that X 1, X 2,  are i.i.d. random variables with each having a finite mean \(\mathbb{E}(X_{i}) =\mu _{0}\) and finite variance \(\mathrm{\,\,Var}(X_{i}) = \sigma _{0}^{2}> 0\). Let Z n be the standardization of the sample mean \(\bar{X}_{n} = \frac{1} {n}\left (X_{1} + \cdots + X_{n}\right )\), namely,
$$\displaystyle{Z_{n} = \frac{\bar{X}_{n} -\mu _{0}} {(\sigma _{0}/\sqrt{n})} = \frac{1} {\sqrt{n}}\,\sum _{j=1}^{n}\left (\frac{X_{j} -\mu _{0}} {\sigma _{0}} \right ).}$$
Then Z n converges in distribution to a standard normal Z as \(n \rightarrow \infty\).
 
9
The classical CLT follows from the Lindeberg CLT through the Dominated Convergence Theorem (expectation form) from measure theory; see Durrett [6, pp. 29,129].
 
10
Recall that two intervals arenonoverlapping if their interiors are disjoint.
 
11
The median of an absolutely continuous random variable X is a number, denoted \(\mathop{\mathrm{Med}}\nolimits (X)\), such that \(\mathbb{P}\left (X>\mathop{ \mathrm{Med}}\nolimits (X)\right ) = \frac{1} {2} = \mathbb{P}\left (X <\mathop{ \mathrm{Med}}\nolimits (X)\right ).\) Additionally, if \(X \sim \mathcal{N}(a,b^{2})\), where a and b > 0 are constants, then the mean and median of X satisfy \(\mathbb{E}\left (\mathrm{e}^{X}\right ) =\mathrm{ e}^{a+b^{2}/2 }\) and \(\mathop{\mathrm{Med}}\nolimits \left (A\,\mathrm{e}^{a\,X}\right ) = A\,\mathrm{e}^{a\,\mathop{\mathrm{Med}}\nolimits (X)}\).
 
12
Recall that the conditional expectation of an absolutely continuous random variable V given an event A with probability (A) > 0 is defined by \(\mathbb{E}\left (V \vert A\right ) = \frac{\mathbb{E}\left (V \,\boldsymbol{1}_{A}\right )} {\mathbb{P}(A)} = \frac{1} {\mathbb{P}(A)}\,\int _{A}v\,f_{V }(v)dv,\) where f V is the p.d.f. of V.
 
13
Replace m by \(\mathsf{r}\) and (hence) μ RW by μ in the formulas.
 
Literature
[1]
go back to reference Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)MATH Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)MATH
[2]
go back to reference Chance, D.: Proofs and derivations of binomial models. Technical Finance Notes, Louisiana State University (2007) Chance, D.: Proofs and derivations of binomial models. Technical Finance Notes, Louisiana State University (2007)
[3]
go back to reference Chance, D.: Risk neutral pricing in discrete time. Teaching Note 96-02, Louisiana State University (2008) Chance, D.: Risk neutral pricing in discrete time. Teaching Note 96-02, Louisiana State University (2008)
[4]
go back to reference Cox, J., Ross, S., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7, 229 (1979)CrossRefMATH Cox, J., Ross, S., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7, 229 (1979)CrossRefMATH
[5]
go back to reference Cox, J., Rubinstein, M.: Options Markets. Prentice Hall, Upper Saddle River (1985) Cox, J., Rubinstein, M.: Options Markets. Prentice Hall, Upper Saddle River (1985)
[6]
[8]
go back to reference Ghahramani, S.: Fundamentals of Probability with Stochastic Processes. Pearson Prentice Hall, Upper Saddle River (2005)MATH Ghahramani, S.: Fundamentals of Probability with Stochastic Processes. Pearson Prentice Hall, Upper Saddle River (2005)MATH
[9]
go back to reference Jarrow, R., Rudd, A.: Option Pricing. Richard Irwin, Homewood (1983) Jarrow, R., Rudd, A.: Option Pricing. Richard Irwin, Homewood (1983)
[10]
go back to reference Jarrow, R., Turnbull, S.: Derivative Securities. South-Western College Publishing, Cincinnati (2000) Jarrow, R., Turnbull, S.: Derivative Securities. South-Western College Publishing, Cincinnati (2000)
[11]
go back to reference Leunberger, D.: Investment Science. Oxford University Press, Oxford (1998) Leunberger, D.: Investment Science. Oxford University Press, Oxford (1998)
[12]
go back to reference McDonald, R.: Derivative Markets. Addison-Wesley, Boston (2006) McDonald, R.: Derivative Markets. Addison-Wesley, Boston (2006)
[13]
go back to reference Neftci, S.: An Introduction to the Mathematics of Financial Derivatives. Academic, San Diego (2000)MATH Neftci, S.: An Introduction to the Mathematics of Financial Derivatives. Academic, San Diego (2000)MATH
[14]
go back to reference Pitman, J.: Setup for the Central Limit Theorem. STAT 205 Lecture Note 10, scribe D. Rosenberg. University of California, Berkeley (2003) Pitman, J.: Setup for the Central Limit Theorem. STAT 205 Lecture Note 10, scribe D. Rosenberg. University of California, Berkeley (2003)
[15]
[16]
go back to reference Wilmott, P., Dewynne, N., Howison, S.: Mathematics of Financial Derivatives: A Student Introduction. Cambridge University Press, Cambridge (1995)CrossRefMATH Wilmott, P., Dewynne, N., Howison, S.: Mathematics of Financial Derivatives: A Student Introduction. Cambridge University Press, Cambridge (1995)CrossRefMATH
Metadata
Title
Binomial Trees and Security Pricing Modeling
Authors
Arlie O. Petters
Xiaoying Dong
Copyright Year
2016
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-3783-7_5

Premium Partners