Skip to main content
Top

2012 | OriginalPaper | Chapter

Bioethanol from Lignocellulosic Biomass

Authors : Xin-Qing Zhao, Li-Han Zi, Feng-Wu Bai, Hai-Long Lin, Xiao-Ming Hao, Guo-Jun Yue, Nancy W. Y. Ho

Published in: Biotechnology in China III: Biofuels and Bioenergy

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

China is suffering from a sustained shortage of crude oil supply, making fuel ethanol and other biofuels alternative solutions for this issue. However, taking into account the country’s large population and dwindling arable land due to rapid urbanization, it is apparent that current fuel ethanol production from grain-based feedstocks is not sustainable, and lignocellulosic biomass, particularly agricultural residues that are abundantly available in China, is the only choice for China to further expand its fuel ethanol production, provided economically viable processes can be developed. In this chapter, cutting edge progress in bioethanol is reviewed, with a focus on the understanding of the molecular structure of the feedstock, leading pretreatment technologies, enzymatic hydrolysis of the cellulose component and strategies for the co-fermentation of the C5 and C6 sugars with engineered microorganisms. Finally, process integration and optimization is addressed with a case study on the COFCO Corporation’s pilot plant, and challenges and perspectives for commercial production of bioethanol are highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xie GH, Wang XY, Ren LT (2010) China’s crop residues resources evaluation. Chin J Biotechnol 26:855–863 Xie GH, Wang XY, Ren LT (2010) China’s crop residues resources evaluation. Chin J Biotechnol 26:855–863
2.
go back to reference Li LJ, Wang Y, Zhang Q et al (2008) Wheat straw burning and its associated impacts on Beijing air quality. Sci China Ser D: Earth Sci 51:403–414CrossRef Li LJ, Wang Y, Zhang Q et al (2008) Wheat straw burning and its associated impacts on Beijing air quality. Sci China Ser D: Earth Sci 51:403–414CrossRef
3.
go back to reference Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef
4.
go back to reference Vleet JHV, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300–306CrossRef Vleet JHV, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300–306CrossRef
5.
go back to reference Service RF (2007) Biofuel researchers prepare to reap a new harvest. Science 315:1488–1491CrossRef Service RF (2007) Biofuel researchers prepare to reap a new harvest. Science 315:1488–1491CrossRef
6.
go back to reference Pauly M, Keegstra K (2008) Cell wall carbohydrates and their modifications as a resource for biofuels. Plant J 54:559–568CrossRef Pauly M, Keegstra K (2008) Cell wall carbohydrates and their modifications as a resource for biofuels. Plant J 54:559–568CrossRef
7.
go back to reference Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443CrossRef Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443CrossRef
8.
go back to reference Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int 44:3358–3393CrossRef Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int 44:3358–3393CrossRef
9.
go back to reference Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef
10.
go back to reference O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef
11.
go back to reference Heiner AP, Sugiyama J, Teleman O (1997) Crystalline cellulose Iα and Iβ studied by molecular dynamics simulation. Carbohyd Res 273:207–223CrossRef Heiner AP, Sugiyama J, Teleman O (1997) Crystalline cellulose Iα and Iβ studied by molecular dynamics simulation. Carbohyd Res 273:207–223CrossRef
12.
go back to reference Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRef Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRef
13.
go back to reference Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annu Rev Genet 44:337–363CrossRef Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annu Rev Genet 44:337–363CrossRef
14.
go back to reference Chundawat SPS, Beckham GT, Himmel ME et al (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:6.1–6.25CrossRef Chundawat SPS, Beckham GT, Himmel ME et al (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:6.1–6.25CrossRef
15.
go back to reference Kumar P, Barrett DM, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef
16.
go back to reference da Costa Sousa L, Chundawat SPS, Balan V et al (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347CrossRef da Costa Sousa L, Chundawat SPS, Balan V et al (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347CrossRef
17.
go back to reference Binod P, Satyanagalakshmi K, Sindhu R et al (2011) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy (In press) Binod P, Satyanagalakshmi K, Sindhu R et al (2011) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy (In press)
18.
go back to reference Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRef Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRef
19.
go back to reference Abatzoglou N, Chornet E, Belkacemi K (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosic fraction. Chem Eng Sci 47:1109–1122CrossRef Abatzoglou N, Chornet E, Belkacemi K (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosic fraction. Chem Eng Sci 47:1109–1122CrossRef
20.
go back to reference Liu C, Wyman CE (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 96:1978–1985CrossRef Liu C, Wyman CE (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 96:1978–1985CrossRef
21.
go back to reference Pedersen M, Johansen KS, Meyer AS (2011) Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol Biofuels 4:11CrossRef Pedersen M, Johansen KS, Meyer AS (2011) Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol Biofuels 4:11CrossRef
22.
go back to reference Mosier N, Hendrickson R, Ho N et al (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993CrossRef Mosier N, Hendrickson R, Ho N et al (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993CrossRef
23.
go back to reference Kim Y, Hendrickson R, Mosier NS et al (2009) Liquid hot water pretreatment of cellulosic biomass. In: Mielenz JR (ed) Biofuels: Methods and Protocols. Methods in Molecular Biology Series. Springer Kim Y, Hendrickson R, Mosier NS et al (2009) Liquid hot water pretreatment of cellulosic biomass. In: Mielenz JR (ed) Biofuels: Methods and Protocols. Methods in Molecular Biology Series. Springer
24.
go back to reference Jennings EW, Schell DJ (2011) Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour Technol 102:1240–1245CrossRef Jennings EW, Schell DJ (2011) Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour Technol 102:1240–1245CrossRef
25.
go back to reference Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977CrossRef Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977CrossRef
26.
go back to reference Saha BC, Iten LB, Cotta MA et al (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRef Saha BC, Iten LB, Cotta MA et al (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRef
27.
go back to reference Zhu Y, Lee YY, Elander RT (2004) Dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotechnol 117:103–114CrossRef Zhu Y, Lee YY, Elander RT (2004) Dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotechnol 117:103–114CrossRef
28.
go back to reference Schell DJ, Farmer J, Newman M et al (2003) Dilute–sulfuric acid pretreatment of corn stover in pilot-scale reactor. Appl Biochem Biotechnol 105–108:69–85CrossRef Schell DJ, Farmer J, Newman M et al (2003) Dilute–sulfuric acid pretreatment of corn stover in pilot-scale reactor. Appl Biochem Biotechnol 105–108:69–85CrossRef
29.
go back to reference Humbird D, Davis R, Tao L et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: Dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Technical Report, NREL/TP-5100-47764 Humbird D, Davis R, Tao L et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: Dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Technical Report, NREL/TP-5100-47764
30.
go back to reference Gupta R, Lee YY (2010) Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide. Biotechnol Prog 26:1180–1186 Gupta R, Lee YY (2010) Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide. Biotechnol Prog 26:1180–1186
31.
go back to reference Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994–2006CrossRef Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994–2006CrossRef
32.
go back to reference Kim TH, Kim JS, Sunwoo C et al (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47CrossRef Kim TH, Kim JS, Sunwoo C et al (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47CrossRef
33.
go back to reference Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
34.
go back to reference Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37CrossRef Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37CrossRef
35.
go back to reference Kim TH, Lee YY (2005) Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96:2007–2013CrossRef Kim TH, Lee YY (2005) Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96:2007–2013CrossRef
36.
go back to reference Kim TH, Lee YY (2006) Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 133:41–57CrossRef Kim TH, Lee YY (2006) Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 133:41–57CrossRef
37.
go back to reference Teymouri F, Laureano-Perez L, Alizadeh H et al (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018CrossRef Teymouri F, Laureano-Perez L, Alizadeh H et al (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018CrossRef
38.
go back to reference Balan V, Bals B, Chundawat SPS et al (2010) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: Methods and Protocols. Methods in Molecular Biology Series. Springer Balan V, Bals B, Chundawat SPS et al (2010) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: Methods and Protocols. Methods in Molecular Biology Series. Springer
39.
go back to reference Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827CrossRef Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827CrossRef
40.
go back to reference Park N, Kim HY, Koo BW et al (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine. Bioresour Technol 101:7046–7053CrossRef Park N, Kim HY, Koo BW et al (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine. Bioresour Technol 101:7046–7053CrossRef
41.
go back to reference Holm J, Lassi U (2011) Ionic Liquids in the pretreatment of lignocellulosic biomass. In: Kokorin A (ed) Ionic liquids: applications and perspectives. InTech, Rijeka Holm J, Lassi U (2011) Ionic Liquids in the pretreatment of lignocellulosic biomass. In: Kokorin A (ed) Ionic liquids: applications and perspectives. InTech, Rijeka
42.
go back to reference Mora-Pale M, Meli L, Doherty TV et al (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108:1229–1245CrossRef Mora-Pale M, Meli L, Doherty TV et al (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108:1229–1245CrossRef
43.
go back to reference Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass: potential for reducing severity of thermochemical biomass pretreatment. Appl Biochem Biotechnol 105–108:27–41CrossRef Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass: potential for reducing severity of thermochemical biomass pretreatment. Appl Biochem Biotechnol 105–108:27–41CrossRef
44.
go back to reference Dashtban M, Schraft H, Syed TA et al (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50 Dashtban M, Schraft H, Syed TA et al (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50
45.
go back to reference Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825CrossRef Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825CrossRef
46.
go back to reference Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Plant litter quality and decomposition. CABI Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Plant litter quality and decomposition. CABI
47.
go back to reference Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20:412–419CrossRef Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20:412–419CrossRef
48.
go back to reference Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies form sugar and starch feedstocks. Biotechnol Adv 26:89–105CrossRef Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies form sugar and starch feedstocks. Biotechnol Adv 26:89–105CrossRef
49.
go back to reference Mamman AS, Lee JM, Kim YC et al (2008) Furfural: Hemicellulose/xylose derived biochemical. Biofuel Bioprod Biorefin 2:438–454CrossRef Mamman AS, Lee JM, Kim YC et al (2008) Furfural: Hemicellulose/xylose derived biochemical. Biofuel Bioprod Biorefin 2:438–454CrossRef
50.
go back to reference Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRef Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRef
51.
go back to reference Tolan JS (1999) Alcohol production from cellulosic biomass: the Iogen process, a model system in operation. In: Jacques K, Lyons TP, Kelsall DR (eds) The alcohol textbook, 3rd edn. Nottingham University Press, Nottingham Tolan JS (1999) Alcohol production from cellulosic biomass: the Iogen process, a model system in operation. In: Jacques K, Lyons TP, Kelsall DR (eds) The alcohol textbook, 3rd edn. Nottingham University Press, Nottingham
52.
go back to reference Wang C, Wu G, Chen C et al (2011) High production of β-glucosidase by Aspergillus niger on corncob. Appl Biochem Biotechnol. (In press) Wang C, Wu G, Chen C et al (2011) High production of β-glucosidase by Aspergillus niger on corncob. Appl Biochem Biotechnol. (In press)
53.
go back to reference Öhgren K, Bura R, Lesnicki G et al (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839CrossRef Öhgren K, Bura R, Lesnicki G et al (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839CrossRef
54.
go back to reference Olofsson K, Palmqvist B, Lidén G (2010) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol Biofuels 3:17 Olofsson K, Palmqvist B, Lidén G (2010) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol Biofuels 3:17
55.
go back to reference Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRef Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRef
56.
go back to reference Lynd LR, Elander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57–58:741–761CrossRef Lynd LR, Elander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57–58:741–761CrossRef
57.
go back to reference Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371CrossRef Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371CrossRef
58.
go back to reference Jin M, Balan V, Gunawan C et al (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108:1290–1297CrossRef Jin M, Balan V, Gunawan C et al (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108:1290–1297CrossRef
59.
go back to reference Shaw AJ, Podkaminer KK, Desai SG et al (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–13774CrossRef Shaw AJ, Podkaminer KK, Desai SG et al (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–13774CrossRef
60.
go back to reference Fujita Y, Ito J, Ueda M et al (2004) Synergistic saccharification and direct fermentation to ethanol of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212CrossRef Fujita Y, Ito J, Ueda M et al (2004) Synergistic saccharification and direct fermentation to ethanol of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212CrossRef
61.
go back to reference Katahira S, Fujita Y, Mizuike A et al (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414CrossRef Katahira S, Fujita Y, Mizuike A et al (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414CrossRef
62.
go back to reference Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804CrossRef Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804CrossRef
63.
go back to reference Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266CrossRef Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266CrossRef
64.
go back to reference Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Microbiol 11:187–198 Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Microbiol 11:187–198
65.
go back to reference Zhang M, Eddy C, Deanda K et al (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243CrossRef Zhang M, Eddy C, Deanda K et al (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243CrossRef
66.
go back to reference Deanda K, Zhang M, Eddy C et al (1996) Development of an arabinose-Fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Env Microbiol 62:4465–4470 Deanda K, Zhang M, Eddy C et al (1996) Development of an arabinose-Fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Env Microbiol 62:4465–4470
67.
go back to reference Mohagheghi A, Evans K, Chou YC et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898CrossRef Mohagheghi A, Evans K, Chou YC et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898CrossRef
68.
go back to reference Seo JS, Chong H, Park HS et al (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23:63–68CrossRef Seo JS, Chong H, Park HS et al (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23:63–68CrossRef
69.
go back to reference Lee KY, Park JM, Kim TY et al (2010) The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb Cell Fact 9:94CrossRef Lee KY, Park JM, Kim TY et al (2010) The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb Cell Fact 9:94CrossRef
70.
go back to reference Picataggio S (2009) Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals. Curr Opin Biotechnol 20:325–329CrossRef Picataggio S (2009) Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals. Curr Opin Biotechnol 20:325–329CrossRef
71.
go back to reference Mukhopadhyay A, Redding AM, Rutherford BJ (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19:228–234CrossRef Mukhopadhyay A, Redding AM, Rutherford BJ (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19:228–234CrossRef
72.
go back to reference Reisch M (2006) Fuels of the future: Chemistry and agriculture join to make a new generation of renewable fuels. Chem Eng News 84(47):30–32CrossRef Reisch M (2006) Fuels of the future: Chemistry and agriculture join to make a new generation of renewable fuels. Chem Eng News 84(47):30–32CrossRef
73.
go back to reference Thomas KC, Hynes SH, Ingledew WM (1996) Practical and theoretical considerations in the production of high concentration of alcohol by fermentation. Process Biochem 31:321–331CrossRef Thomas KC, Hynes SH, Ingledew WM (1996) Practical and theoretical considerations in the production of high concentration of alcohol by fermentation. Process Biochem 31:321–331CrossRef
74.
go back to reference Kotter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the P. stipitis xylitol dehydrogenase gene XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500CrossRef Kotter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the P. stipitis xylitol dehydrogenase gene XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500CrossRef
75.
go back to reference Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88CrossRef Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88CrossRef
76.
go back to reference Ho NWY, Chen Z, Brainard A (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859 Ho NWY, Chen Z, Brainard A (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859
77.
go back to reference Ho NWY, Chen Z, Brainard A (1997) Genetically engineered yeast capable of effective fermentation of xylose to ethanol. Proceedings of Tenth International Symposium on Alcohol Fuels, Colorado Springs, CO, USA, 7–10 Nov P738. Ho NWY, Chen Z, Brainard A (1997) Genetically engineered yeast capable of effective fermentation of xylose to ethanol. Proceedings of Tenth International Symposium on Alcohol Fuels, Colorado Springs, CO, USA, 7–10 Nov P738.
78.
go back to reference Toon ST, Philippidis GP, Ho NYW et al (1997) Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotech 63–65:243–255CrossRef Toon ST, Philippidis GP, Ho NYW et al (1997) Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotech 63–65:243–255CrossRef
79.
go back to reference Bera AK, Sedlak M, Khan A et al (2010) Establishment of L-arabinose fermentation in Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotech 87:1803–1811CrossRef Bera AK, Sedlak M, Khan A et al (2010) Establishment of L-arabinose fermentation in Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotech 87:1803–1811CrossRef
80.
go back to reference Casey E, Sedlak M, Ho NWY et al (2010) Effect of acetic acid and pH on the co-fermentation of glucose and xylose to ethanol by recombinant S. cerevisiae. FEMS Yeast Res 10:385–393CrossRef Casey E, Sedlak M, Ho NWY et al (2010) Effect of acetic acid and pH on the co-fermentation of glucose and xylose to ethanol by recombinant S. cerevisiae. FEMS Yeast Res 10:385–393CrossRef
81.
go back to reference Athmanathan A, Sedlak M, Ho NYW et al (2011) Effect of product inhibition on xylose fermentation to ethanol in glucose-xylose co-fermenting S. cerevisiae 424A (LNH-ST). Biol Eng 3:111–124 Athmanathan A, Sedlak M, Ho NYW et al (2011) Effect of product inhibition on xylose fermentation to ethanol in glucose-xylose co-fermenting S. cerevisiae 424A (LNH-ST). Biol Eng 3:111–124
82.
go back to reference Bera AK, Ho NYW, Khan A et al (2011) A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biotechnol 38:617–626CrossRef Bera AK, Ho NYW, Khan A et al (2011) A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biotechnol 38:617–626CrossRef
Metadata
Title
Bioethanol from Lignocellulosic Biomass
Authors
Xin-Qing Zhao
Li-Han Zi
Feng-Wu Bai
Hai-Long Lin
Xiao-Ming Hao
Guo-Jun Yue
Nancy W. Y. Ho
Copyright Year
2012
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2011_129

Premium Partners