Skip to main content

2012 | OriginalPaper | Buchkapitel

Bioethanol from Lignocellulosic Biomass

verfasst von : Xin-Qing Zhao, Li-Han Zi, Feng-Wu Bai, Hai-Long Lin, Xiao-Ming Hao, Guo-Jun Yue, Nancy W. Y. Ho

Erschienen in: Biotechnology in China III: Biofuels and Bioenergy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

China is suffering from a sustained shortage of crude oil supply, making fuel ethanol and other biofuels alternative solutions for this issue. However, taking into account the country’s large population and dwindling arable land due to rapid urbanization, it is apparent that current fuel ethanol production from grain-based feedstocks is not sustainable, and lignocellulosic biomass, particularly agricultural residues that are abundantly available in China, is the only choice for China to further expand its fuel ethanol production, provided economically viable processes can be developed. In this chapter, cutting edge progress in bioethanol is reviewed, with a focus on the understanding of the molecular structure of the feedstock, leading pretreatment technologies, enzymatic hydrolysis of the cellulose component and strategies for the co-fermentation of the C5 and C6 sugars with engineered microorganisms. Finally, process integration and optimization is addressed with a case study on the COFCO Corporation’s pilot plant, and challenges and perspectives for commercial production of bioethanol are highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xie GH, Wang XY, Ren LT (2010) China’s crop residues resources evaluation. Chin J Biotechnol 26:855–863 Xie GH, Wang XY, Ren LT (2010) China’s crop residues resources evaluation. Chin J Biotechnol 26:855–863
2.
Zurück zum Zitat Li LJ, Wang Y, Zhang Q et al (2008) Wheat straw burning and its associated impacts on Beijing air quality. Sci China Ser D: Earth Sci 51:403–414CrossRef Li LJ, Wang Y, Zhang Q et al (2008) Wheat straw burning and its associated impacts on Beijing air quality. Sci China Ser D: Earth Sci 51:403–414CrossRef
3.
Zurück zum Zitat Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315:804–807CrossRef
4.
Zurück zum Zitat Vleet JHV, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300–306CrossRef Vleet JHV, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300–306CrossRef
5.
Zurück zum Zitat Service RF (2007) Biofuel researchers prepare to reap a new harvest. Science 315:1488–1491CrossRef Service RF (2007) Biofuel researchers prepare to reap a new harvest. Science 315:1488–1491CrossRef
6.
Zurück zum Zitat Pauly M, Keegstra K (2008) Cell wall carbohydrates and their modifications as a resource for biofuels. Plant J 54:559–568CrossRef Pauly M, Keegstra K (2008) Cell wall carbohydrates and their modifications as a resource for biofuels. Plant J 54:559–568CrossRef
7.
Zurück zum Zitat Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443CrossRef Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443CrossRef
8.
Zurück zum Zitat Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int 44:3358–3393CrossRef Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int 44:3358–3393CrossRef
9.
Zurück zum Zitat Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef
10.
Zurück zum Zitat O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef
11.
Zurück zum Zitat Heiner AP, Sugiyama J, Teleman O (1997) Crystalline cellulose Iα and Iβ studied by molecular dynamics simulation. Carbohyd Res 273:207–223CrossRef Heiner AP, Sugiyama J, Teleman O (1997) Crystalline cellulose Iα and Iβ studied by molecular dynamics simulation. Carbohyd Res 273:207–223CrossRef
12.
Zurück zum Zitat Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRef Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRef
13.
Zurück zum Zitat Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annu Rev Genet 44:337–363CrossRef Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annu Rev Genet 44:337–363CrossRef
14.
Zurück zum Zitat Chundawat SPS, Beckham GT, Himmel ME et al (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:6.1–6.25CrossRef Chundawat SPS, Beckham GT, Himmel ME et al (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:6.1–6.25CrossRef
15.
Zurück zum Zitat Kumar P, Barrett DM, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef
16.
Zurück zum Zitat da Costa Sousa L, Chundawat SPS, Balan V et al (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347CrossRef da Costa Sousa L, Chundawat SPS, Balan V et al (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347CrossRef
17.
Zurück zum Zitat Binod P, Satyanagalakshmi K, Sindhu R et al (2011) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy (In press) Binod P, Satyanagalakshmi K, Sindhu R et al (2011) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy (In press)
18.
Zurück zum Zitat Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRef Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRef
19.
Zurück zum Zitat Abatzoglou N, Chornet E, Belkacemi K (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosic fraction. Chem Eng Sci 47:1109–1122CrossRef Abatzoglou N, Chornet E, Belkacemi K (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosic fraction. Chem Eng Sci 47:1109–1122CrossRef
20.
Zurück zum Zitat Liu C, Wyman CE (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 96:1978–1985CrossRef Liu C, Wyman CE (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 96:1978–1985CrossRef
21.
Zurück zum Zitat Pedersen M, Johansen KS, Meyer AS (2011) Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol Biofuels 4:11CrossRef Pedersen M, Johansen KS, Meyer AS (2011) Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol Biofuels 4:11CrossRef
22.
Zurück zum Zitat Mosier N, Hendrickson R, Ho N et al (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993CrossRef Mosier N, Hendrickson R, Ho N et al (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993CrossRef
23.
Zurück zum Zitat Kim Y, Hendrickson R, Mosier NS et al (2009) Liquid hot water pretreatment of cellulosic biomass. In: Mielenz JR (ed) Biofuels: Methods and Protocols. Methods in Molecular Biology Series. Springer Kim Y, Hendrickson R, Mosier NS et al (2009) Liquid hot water pretreatment of cellulosic biomass. In: Mielenz JR (ed) Biofuels: Methods and Protocols. Methods in Molecular Biology Series. Springer
24.
Zurück zum Zitat Jennings EW, Schell DJ (2011) Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour Technol 102:1240–1245CrossRef Jennings EW, Schell DJ (2011) Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour Technol 102:1240–1245CrossRef
25.
Zurück zum Zitat Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977CrossRef Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977CrossRef
26.
Zurück zum Zitat Saha BC, Iten LB, Cotta MA et al (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRef Saha BC, Iten LB, Cotta MA et al (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRef
27.
Zurück zum Zitat Zhu Y, Lee YY, Elander RT (2004) Dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotechnol 117:103–114CrossRef Zhu Y, Lee YY, Elander RT (2004) Dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotechnol 117:103–114CrossRef
28.
Zurück zum Zitat Schell DJ, Farmer J, Newman M et al (2003) Dilute–sulfuric acid pretreatment of corn stover in pilot-scale reactor. Appl Biochem Biotechnol 105–108:69–85CrossRef Schell DJ, Farmer J, Newman M et al (2003) Dilute–sulfuric acid pretreatment of corn stover in pilot-scale reactor. Appl Biochem Biotechnol 105–108:69–85CrossRef
29.
Zurück zum Zitat Humbird D, Davis R, Tao L et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: Dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Technical Report, NREL/TP-5100-47764 Humbird D, Davis R, Tao L et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: Dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Technical Report, NREL/TP-5100-47764
30.
Zurück zum Zitat Gupta R, Lee YY (2010) Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide. Biotechnol Prog 26:1180–1186 Gupta R, Lee YY (2010) Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide. Biotechnol Prog 26:1180–1186
31.
Zurück zum Zitat Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994–2006CrossRef Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994–2006CrossRef
32.
Zurück zum Zitat Kim TH, Kim JS, Sunwoo C et al (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47CrossRef Kim TH, Kim JS, Sunwoo C et al (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47CrossRef
33.
Zurück zum Zitat Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
34.
Zurück zum Zitat Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37CrossRef Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37CrossRef
35.
Zurück zum Zitat Kim TH, Lee YY (2005) Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96:2007–2013CrossRef Kim TH, Lee YY (2005) Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96:2007–2013CrossRef
36.
Zurück zum Zitat Kim TH, Lee YY (2006) Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 133:41–57CrossRef Kim TH, Lee YY (2006) Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 133:41–57CrossRef
37.
Zurück zum Zitat Teymouri F, Laureano-Perez L, Alizadeh H et al (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018CrossRef Teymouri F, Laureano-Perez L, Alizadeh H et al (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018CrossRef
38.
Zurück zum Zitat Balan V, Bals B, Chundawat SPS et al (2010) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: Methods and Protocols. Methods in Molecular Biology Series. Springer Balan V, Bals B, Chundawat SPS et al (2010) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: Methods and Protocols. Methods in Molecular Biology Series. Springer
39.
Zurück zum Zitat Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827CrossRef Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827CrossRef
40.
Zurück zum Zitat Park N, Kim HY, Koo BW et al (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine. Bioresour Technol 101:7046–7053CrossRef Park N, Kim HY, Koo BW et al (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine. Bioresour Technol 101:7046–7053CrossRef
41.
Zurück zum Zitat Holm J, Lassi U (2011) Ionic Liquids in the pretreatment of lignocellulosic biomass. In: Kokorin A (ed) Ionic liquids: applications and perspectives. InTech, Rijeka Holm J, Lassi U (2011) Ionic Liquids in the pretreatment of lignocellulosic biomass. In: Kokorin A (ed) Ionic liquids: applications and perspectives. InTech, Rijeka
42.
Zurück zum Zitat Mora-Pale M, Meli L, Doherty TV et al (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108:1229–1245CrossRef Mora-Pale M, Meli L, Doherty TV et al (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108:1229–1245CrossRef
43.
Zurück zum Zitat Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass: potential for reducing severity of thermochemical biomass pretreatment. Appl Biochem Biotechnol 105–108:27–41CrossRef Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass: potential for reducing severity of thermochemical biomass pretreatment. Appl Biochem Biotechnol 105–108:27–41CrossRef
44.
Zurück zum Zitat Dashtban M, Schraft H, Syed TA et al (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50 Dashtban M, Schraft H, Syed TA et al (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50
45.
Zurück zum Zitat Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825CrossRef Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825CrossRef
46.
Zurück zum Zitat Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Plant litter quality and decomposition. CABI Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Plant litter quality and decomposition. CABI
47.
Zurück zum Zitat Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20:412–419CrossRef Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20:412–419CrossRef
48.
Zurück zum Zitat Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies form sugar and starch feedstocks. Biotechnol Adv 26:89–105CrossRef Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies form sugar and starch feedstocks. Biotechnol Adv 26:89–105CrossRef
49.
Zurück zum Zitat Mamman AS, Lee JM, Kim YC et al (2008) Furfural: Hemicellulose/xylose derived biochemical. Biofuel Bioprod Biorefin 2:438–454CrossRef Mamman AS, Lee JM, Kim YC et al (2008) Furfural: Hemicellulose/xylose derived biochemical. Biofuel Bioprod Biorefin 2:438–454CrossRef
50.
Zurück zum Zitat Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRef Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRef
51.
Zurück zum Zitat Tolan JS (1999) Alcohol production from cellulosic biomass: the Iogen process, a model system in operation. In: Jacques K, Lyons TP, Kelsall DR (eds) The alcohol textbook, 3rd edn. Nottingham University Press, Nottingham Tolan JS (1999) Alcohol production from cellulosic biomass: the Iogen process, a model system in operation. In: Jacques K, Lyons TP, Kelsall DR (eds) The alcohol textbook, 3rd edn. Nottingham University Press, Nottingham
52.
Zurück zum Zitat Wang C, Wu G, Chen C et al (2011) High production of β-glucosidase by Aspergillus niger on corncob. Appl Biochem Biotechnol. (In press) Wang C, Wu G, Chen C et al (2011) High production of β-glucosidase by Aspergillus niger on corncob. Appl Biochem Biotechnol. (In press)
53.
Zurück zum Zitat Öhgren K, Bura R, Lesnicki G et al (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839CrossRef Öhgren K, Bura R, Lesnicki G et al (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839CrossRef
54.
Zurück zum Zitat Olofsson K, Palmqvist B, Lidén G (2010) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol Biofuels 3:17 Olofsson K, Palmqvist B, Lidén G (2010) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol Biofuels 3:17
55.
Zurück zum Zitat Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRef Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRef
56.
Zurück zum Zitat Lynd LR, Elander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57–58:741–761CrossRef Lynd LR, Elander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57–58:741–761CrossRef
57.
Zurück zum Zitat Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371CrossRef Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371CrossRef
58.
Zurück zum Zitat Jin M, Balan V, Gunawan C et al (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108:1290–1297CrossRef Jin M, Balan V, Gunawan C et al (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108:1290–1297CrossRef
59.
Zurück zum Zitat Shaw AJ, Podkaminer KK, Desai SG et al (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–13774CrossRef Shaw AJ, Podkaminer KK, Desai SG et al (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–13774CrossRef
60.
Zurück zum Zitat Fujita Y, Ito J, Ueda M et al (2004) Synergistic saccharification and direct fermentation to ethanol of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212CrossRef Fujita Y, Ito J, Ueda M et al (2004) Synergistic saccharification and direct fermentation to ethanol of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212CrossRef
61.
Zurück zum Zitat Katahira S, Fujita Y, Mizuike A et al (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414CrossRef Katahira S, Fujita Y, Mizuike A et al (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414CrossRef
62.
Zurück zum Zitat Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804CrossRef Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804CrossRef
63.
Zurück zum Zitat Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266CrossRef Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266CrossRef
64.
Zurück zum Zitat Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Microbiol 11:187–198 Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Microbiol 11:187–198
65.
Zurück zum Zitat Zhang M, Eddy C, Deanda K et al (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243CrossRef Zhang M, Eddy C, Deanda K et al (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243CrossRef
66.
Zurück zum Zitat Deanda K, Zhang M, Eddy C et al (1996) Development of an arabinose-Fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Env Microbiol 62:4465–4470 Deanda K, Zhang M, Eddy C et al (1996) Development of an arabinose-Fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Env Microbiol 62:4465–4470
67.
Zurück zum Zitat Mohagheghi A, Evans K, Chou YC et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898CrossRef Mohagheghi A, Evans K, Chou YC et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898CrossRef
68.
Zurück zum Zitat Seo JS, Chong H, Park HS et al (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23:63–68CrossRef Seo JS, Chong H, Park HS et al (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23:63–68CrossRef
69.
Zurück zum Zitat Lee KY, Park JM, Kim TY et al (2010) The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb Cell Fact 9:94CrossRef Lee KY, Park JM, Kim TY et al (2010) The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb Cell Fact 9:94CrossRef
70.
Zurück zum Zitat Picataggio S (2009) Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals. Curr Opin Biotechnol 20:325–329CrossRef Picataggio S (2009) Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals. Curr Opin Biotechnol 20:325–329CrossRef
71.
Zurück zum Zitat Mukhopadhyay A, Redding AM, Rutherford BJ (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19:228–234CrossRef Mukhopadhyay A, Redding AM, Rutherford BJ (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19:228–234CrossRef
72.
Zurück zum Zitat Reisch M (2006) Fuels of the future: Chemistry and agriculture join to make a new generation of renewable fuels. Chem Eng News 84(47):30–32CrossRef Reisch M (2006) Fuels of the future: Chemistry and agriculture join to make a new generation of renewable fuels. Chem Eng News 84(47):30–32CrossRef
73.
Zurück zum Zitat Thomas KC, Hynes SH, Ingledew WM (1996) Practical and theoretical considerations in the production of high concentration of alcohol by fermentation. Process Biochem 31:321–331CrossRef Thomas KC, Hynes SH, Ingledew WM (1996) Practical and theoretical considerations in the production of high concentration of alcohol by fermentation. Process Biochem 31:321–331CrossRef
74.
Zurück zum Zitat Kotter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the P. stipitis xylitol dehydrogenase gene XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500CrossRef Kotter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the P. stipitis xylitol dehydrogenase gene XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500CrossRef
75.
Zurück zum Zitat Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88CrossRef Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88CrossRef
76.
Zurück zum Zitat Ho NWY, Chen Z, Brainard A (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859 Ho NWY, Chen Z, Brainard A (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859
77.
Zurück zum Zitat Ho NWY, Chen Z, Brainard A (1997) Genetically engineered yeast capable of effective fermentation of xylose to ethanol. Proceedings of Tenth International Symposium on Alcohol Fuels, Colorado Springs, CO, USA, 7–10 Nov P738. Ho NWY, Chen Z, Brainard A (1997) Genetically engineered yeast capable of effective fermentation of xylose to ethanol. Proceedings of Tenth International Symposium on Alcohol Fuels, Colorado Springs, CO, USA, 7–10 Nov P738.
78.
Zurück zum Zitat Toon ST, Philippidis GP, Ho NYW et al (1997) Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotech 63–65:243–255CrossRef Toon ST, Philippidis GP, Ho NYW et al (1997) Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotech 63–65:243–255CrossRef
79.
Zurück zum Zitat Bera AK, Sedlak M, Khan A et al (2010) Establishment of L-arabinose fermentation in Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotech 87:1803–1811CrossRef Bera AK, Sedlak M, Khan A et al (2010) Establishment of L-arabinose fermentation in Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotech 87:1803–1811CrossRef
80.
Zurück zum Zitat Casey E, Sedlak M, Ho NWY et al (2010) Effect of acetic acid and pH on the co-fermentation of glucose and xylose to ethanol by recombinant S. cerevisiae. FEMS Yeast Res 10:385–393CrossRef Casey E, Sedlak M, Ho NWY et al (2010) Effect of acetic acid and pH on the co-fermentation of glucose and xylose to ethanol by recombinant S. cerevisiae. FEMS Yeast Res 10:385–393CrossRef
81.
Zurück zum Zitat Athmanathan A, Sedlak M, Ho NYW et al (2011) Effect of product inhibition on xylose fermentation to ethanol in glucose-xylose co-fermenting S. cerevisiae 424A (LNH-ST). Biol Eng 3:111–124 Athmanathan A, Sedlak M, Ho NYW et al (2011) Effect of product inhibition on xylose fermentation to ethanol in glucose-xylose co-fermenting S. cerevisiae 424A (LNH-ST). Biol Eng 3:111–124
82.
Zurück zum Zitat Bera AK, Ho NYW, Khan A et al (2011) A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biotechnol 38:617–626CrossRef Bera AK, Ho NYW, Khan A et al (2011) A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biotechnol 38:617–626CrossRef
Metadaten
Titel
Bioethanol from Lignocellulosic Biomass
verfasst von
Xin-Qing Zhao
Li-Han Zi
Feng-Wu Bai
Hai-Long Lin
Xiao-Ming Hao
Guo-Jun Yue
Nancy W. Y. Ho
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2011_129

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.