Skip to main content
Top

2016 | OriginalPaper | Chapter

Bioinspired Control Method Based on Spiking Neural Networks and SMA Actuator Wires for LASER Spot Tracking

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents a new biologically inspired technique for automatically compensating the light spot deviation from the normal position for laser spot trackers. The method is based on hardware implementation of the spiking neural networks which provides fast response due to real time operation and ability to learn unsupervised when they are stimulated by concurrent events. For increasing the biological plausibility of the method, the spiking neural network controls the contraction of shape memory alloy (SMA) actuator wires that operates as the muscular fibres. These SMA wires are the most suitable actuators for being controlled by the electronic spiking neurons because the contraction force increases naturally with the spiking frequency. From our knowledge the laser spot tracking using spiking neural networks was not performed previously. Moreover, other original ideas represent the use of analogue implementation of the spiking neural networks for real time operation as well as the SMA actuator wires for more biological plausibility. To validate this method we implemented in hardware a spiking neural network structure that processes the input from a one dimensional photodiode array and controls a positioning system based on SMA actuator wires. The results show that the spiking neural network is able to detect the one-dimensional spot motion and to adapt the response time by Hebbian learning mechanisms to the spot wandering amplitude. Moreover, by driving two antagonistic SMA actuator wires the system is able to track the laser spot with low response time and acceptable precision. These results are encouraging to develop bio-inspired low power spot tracking system for enhancing the receiving accuracy in free space optical communications or for enhancing the efficacy of the photovoltaic systems. Moreover, the light tracking principle based on spiking neural networks and SMA wires can be successfully used in implementation of the light tracking mechanism of an artificial eye.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Andrianesis, K., Tzes, A.: Development and control of a multifunctional prosthetic hand with shape memory alloy actuators. J. Intell. Robot. Syst. 78, 257–289 (2014)CrossRef Andrianesis, K., Tzes, A.: Development and control of a multifunctional prosthetic hand with shape memory alloy actuators. J. Intell. Robot. Syst. 78, 257–289 (2014)CrossRef
2.
go back to reference Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998) Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)
3.
go back to reference Dan, Y., Poo, M.: Spike timing dependent plasticity of neural circuits. Neuron 24, 23–30 (2004)CrossRef Dan, Y., Poo, M.: Spike timing dependent plasticity of neural circuits. Neuron 24, 23–30 (2004)CrossRef
4.
go back to reference Donmez, B., Ozkan, B., Kadioglu, S.: Precise position control using shape memory alloy wires. Turk. J. Elec. Eng. Comp. Sci. 18, 899–912 (2010) Donmez, B., Ozkan, B., Kadioglu, S.: Precise position control using shape memory alloy wires. Turk. J. Elec. Eng. Comp. Sci. 18, 899–912 (2010)
5.
go back to reference Duh, F., Lin, C.: Tracking a maneuvering target using neural fuzzy network. IEEE Trans. Syst. Man, Cybern. B, Cybern. 34, 16–33 (2004)CrossRef Duh, F., Lin, C.: Tracking a maneuvering target using neural fuzzy network. IEEE Trans. Syst. Man, Cybern. B, Cybern. 34, 16–33 (2004)CrossRef
6.
go back to reference Dynalloy Inc: Technical characteristics of Flexinol actuator wires (no year specified) Dynalloy Inc: Technical characteristics of Flexinol actuator wires (no year specified)
7.
go back to reference Gerstner, W., Kistler, W.: Spiking neurons models: single neurons, populations, plasticity. Cambridge University Press, Cambridge (2002)CrossRefMATH Gerstner, W., Kistler, W.: Spiking neurons models: single neurons, populations, plasticity. Cambridge University Press, Cambridge (2002)CrossRefMATH
8.
go back to reference Haibin, S., Jingjing, B.: Maximum power point tracking algorithm based on fuzzy neural networks for photovoltaic generation system. pp. 353–357 (2010) Haibin, S., Jingjing, B.: Maximum power point tracking algorithm based on fuzzy neural networks for photovoltaic generation system. pp. 353–357 (2010)
9.
go back to reference Hines, M., Eichner, H., Schürmann, F.: Neuron spitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. J. Comput. Neurosci. 25, 203–210 (2008)MathSciNetCrossRef Hines, M., Eichner, H., Schürmann, F.: Neuron spitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. J. Comput. Neurosci. 25, 203–210 (2008)MathSciNetCrossRef
10.
go back to reference Hopfield, J., Brody, C.: What is a moment? transient synchrony as a collective mechanism for spatiotemporal integration. Proc. Natl. Acad. Sci. USA 98, 1282–1287 (2001)CrossRef Hopfield, J., Brody, C.: What is a moment? transient synchrony as a collective mechanism for spatiotemporal integration. Proc. Natl. Acad. Sci. USA 98, 1282–1287 (2001)CrossRef
11.
go back to reference Hulea, M.: A model of silicon neurons suitable for speech recognition. Control Eng. Appl. Inform. 10, 32–41 (2008) Hulea, M.: A model of silicon neurons suitable for speech recognition. Control Eng. Appl. Inform. 10, 32–41 (2008)
12.
go back to reference Hulea, M.: A new method to obtain non-volatile memory for networks of spiking neurons. Memoirs of Sci. Sect. XXXIII, 129–146 (2010) Hulea, M.: A new method to obtain non-volatile memory for networks of spiking neurons. Memoirs of Sci. Sect. XXXIII, 129–146 (2010)
13.
go back to reference Hulea, M.: The mathematical model of a biologically inspired electronic neuron for ease the design of spiking neural networks topology. pp. 282–287 (2011) Hulea, M.: The mathematical model of a biologically inspired electronic neuron for ease the design of spiking neural networks topology. pp. 282–287 (2011)
14.
go back to reference Hulea, M.: Using spiking neural networks for light spot tracking. In: 20th European Signal Processing Conference, pp. 1708–1712. Bucharest (2012) Hulea, M.: Using spiking neural networks for light spot tracking. In: 20th European Signal Processing Conference, pp. 1708–1712. Bucharest (2012)
15.
go back to reference Hulea, M., Caruntu, C.: Spiking neural network for controlling the artificial muscles of a humanoid robotic arm. In: International Conference on System Theory, Control and Computing, pp. 163–168. Sinaia (2014) Hulea, M., Caruntu, C.: Spiking neural network for controlling the artificial muscles of a humanoid robotic arm. In: International Conference on System Theory, Control and Computing, pp. 163–168. Sinaia (2014)
16.
go back to reference Izhikevich, E.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004)CrossRef Izhikevich, E.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004)CrossRef
18.
go back to reference Jacob, V., Brasier, D., Erchova, I., Feldman, D., Shulz, D.: Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. J. Neurosci. 27, 1271–1284 (2007)CrossRef Jacob, V., Brasier, D., Erchova, I., Feldman, D., Shulz, D.: Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. J. Neurosci. 27, 1271–1284 (2007)CrossRef
19.
go back to reference Jimenez-Fernandez, A., Jimenez-Moreno, G., Linarea-Barranco, A., Dominguez-Morales, M., Paz-Vicente, R., Civit-Balcells, A.: A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs. Sensors 12, 3831–3856 (2012)CrossRef Jimenez-Fernandez, A., Jimenez-Moreno, G., Linarea-Barranco, A., Dominguez-Morales, M., Paz-Vicente, R., Civit-Balcells, A.: A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs. Sensors 12, 3831–3856 (2012)CrossRef
20.
go back to reference Jolivet, R., Lewis, T., Gerstner, W.: Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Neurophysiology 92, 959–976 (2004)CrossRef Jolivet, R., Lewis, T., Gerstner, W.: Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Neurophysiology 92, 959–976 (2004)CrossRef
21.
go back to reference Joshi, P., Maass, W.: Movement generation with circuits of spiking neurons. Neur. Comput. 17, 1715–1738 (2005)CrossRefMATH Joshi, P., Maass, W.: Movement generation with circuits of spiking neurons. Neur. Comput. 17, 1715–1738 (2005)CrossRefMATH
22.
go back to reference Kobayashi, R., Tsubo, Y., Shinomoto, S.: Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front. Comput. Neurosci. 3 (2009) Kobayashi, R., Tsubo, Y., Shinomoto, S.: Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front. Comput. Neurosci. 3 (2009)
23.
go back to reference Lovelace, J., Cios, K.: A very simple spiking neuron model that allows for modeling of large, complex systems. Neural Comput. 20, 65–90 (2008)MathSciNetCrossRefMATH Lovelace, J., Cios, K.: A very simple spiking neuron model that allows for modeling of large, complex systems. Neural Comput. 20, 65–90 (2008)MathSciNetCrossRefMATH
24.
go back to reference Maass, W., Bishop, C.: Pulsed neural networks. The MIT Press, Cambridge (1998)MATH Maass, W., Bishop, C.: Pulsed neural networks. The MIT Press, Cambridge (1998)MATH
25.
go back to reference Maass, W., Natschläger, T., Markram, H.: Computational models for generic cortical micro-circuits. Comput. Neurosci. A Compr. Approach pp. 575–605 (2004) Maass, W., Natschläger, T., Markram, H.: Computational models for generic cortical micro-circuits. Comput. Neurosci. A Compr. Approach pp. 575–605 (2004)
26.
go back to reference Markram, H., Shurmann, F.: Fully implicit parallel simulation of single neurons. J. Comput. Neurosci. 25, 439–448 (2008)MathSciNetCrossRef Markram, H., Shurmann, F.: Fully implicit parallel simulation of single neurons. J. Comput. Neurosci. 25, 439–448 (2008)MathSciNetCrossRef
27.
go back to reference OReylli, R., Munakata, Y.: Computational explorations in cognitive neuroscience. The MIT Press, Cambridge (2000) OReylli, R., Munakata, Y.: Computational explorations in cognitive neuroscience. The MIT Press, Cambridge (2000)
28.
go back to reference Otieno, C., Nyakoe, G., Wekesa, C.: A neural fuzzy based maximum power point tracker for a photovoltaic system. In: AFRICON, pp. 1–6 (2009) Otieno, C., Nyakoe, G., Wekesa, C.: A neural fuzzy based maximum power point tracker for a photovoltaic system. In: AFRICON, pp. 1–6 (2009)
29.
go back to reference Rast, A., Mukaram Khan, M., Jin, X., Plana, L., Furber, S.: Universal abstract-time platform for real-time neural networks, pp. 2611–2618. IEEE Press, Piscataway (2009) Rast, A., Mukaram Khan, M., Jin, X., Plana, L., Furber, S.: Universal abstract-time platform for real-time neural networks, pp. 2611–2618. IEEE Press, Piscataway (2009)
30.
go back to reference Swiercz, W., Cios, K.: A new synaptic plasticity rule for networks of spiking neurons. IEEE Trans. Neural Netw. 17, 94–99 (2006)CrossRef Swiercz, W., Cios, K.: A new synaptic plasticity rule for networks of spiking neurons. IEEE Trans. Neural Netw. 17, 94–99 (2006)CrossRef
31.
go back to reference Teh, Y.: Accurate force and position control of shape memory alloy actuators. Ph.D. thesis, The Australian National University (2008) Teh, Y.: Accurate force and position control of shape memory alloy actuators. Ph.D. thesis, The Australian National University (2008)
32.
go back to reference Wong, Y., Sundareshan, M.: Data fusion and tracking of complex target maneuvers with a simplex-trained neural network-based architecture, pp. 1024–1029. Bucharest (1998) Wong, Y., Sundareshan, M.: Data fusion and tracking of complex target maneuvers with a simplex-trained neural network-based architecture, pp. 1024–1029. Bucharest (1998)
Metadata
Title
Bioinspired Control Method Based on Spiking Neural Networks and SMA Actuator Wires for LASER Spot Tracking
Author
Mircea Hulea
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-26230-7_2

Premium Partner