Skip to main content

2016 | OriginalPaper | Buchkapitel

Bioinspired Control Method Based on Spiking Neural Networks and SMA Actuator Wires for LASER Spot Tracking

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents a new biologically inspired technique for automatically compensating the light spot deviation from the normal position for laser spot trackers. The method is based on hardware implementation of the spiking neural networks which provides fast response due to real time operation and ability to learn unsupervised when they are stimulated by concurrent events. For increasing the biological plausibility of the method, the spiking neural network controls the contraction of shape memory alloy (SMA) actuator wires that operates as the muscular fibres. These SMA wires are the most suitable actuators for being controlled by the electronic spiking neurons because the contraction force increases naturally with the spiking frequency. From our knowledge the laser spot tracking using spiking neural networks was not performed previously. Moreover, other original ideas represent the use of analogue implementation of the spiking neural networks for real time operation as well as the SMA actuator wires for more biological plausibility. To validate this method we implemented in hardware a spiking neural network structure that processes the input from a one dimensional photodiode array and controls a positioning system based on SMA actuator wires. The results show that the spiking neural network is able to detect the one-dimensional spot motion and to adapt the response time by Hebbian learning mechanisms to the spot wandering amplitude. Moreover, by driving two antagonistic SMA actuator wires the system is able to track the laser spot with low response time and acceptable precision. These results are encouraging to develop bio-inspired low power spot tracking system for enhancing the receiving accuracy in free space optical communications or for enhancing the efficacy of the photovoltaic systems. Moreover, the light tracking principle based on spiking neural networks and SMA wires can be successfully used in implementation of the light tracking mechanism of an artificial eye.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Andrianesis, K., Tzes, A.: Development and control of a multifunctional prosthetic hand with shape memory alloy actuators. J. Intell. Robot. Syst. 78, 257–289 (2014)CrossRef Andrianesis, K., Tzes, A.: Development and control of a multifunctional prosthetic hand with shape memory alloy actuators. J. Intell. Robot. Syst. 78, 257–289 (2014)CrossRef
2.
Zurück zum Zitat Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998) Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)
3.
Zurück zum Zitat Dan, Y., Poo, M.: Spike timing dependent plasticity of neural circuits. Neuron 24, 23–30 (2004)CrossRef Dan, Y., Poo, M.: Spike timing dependent plasticity of neural circuits. Neuron 24, 23–30 (2004)CrossRef
4.
Zurück zum Zitat Donmez, B., Ozkan, B., Kadioglu, S.: Precise position control using shape memory alloy wires. Turk. J. Elec. Eng. Comp. Sci. 18, 899–912 (2010) Donmez, B., Ozkan, B., Kadioglu, S.: Precise position control using shape memory alloy wires. Turk. J. Elec. Eng. Comp. Sci. 18, 899–912 (2010)
5.
Zurück zum Zitat Duh, F., Lin, C.: Tracking a maneuvering target using neural fuzzy network. IEEE Trans. Syst. Man, Cybern. B, Cybern. 34, 16–33 (2004)CrossRef Duh, F., Lin, C.: Tracking a maneuvering target using neural fuzzy network. IEEE Trans. Syst. Man, Cybern. B, Cybern. 34, 16–33 (2004)CrossRef
6.
Zurück zum Zitat Dynalloy Inc: Technical characteristics of Flexinol actuator wires (no year specified) Dynalloy Inc: Technical characteristics of Flexinol actuator wires (no year specified)
7.
Zurück zum Zitat Gerstner, W., Kistler, W.: Spiking neurons models: single neurons, populations, plasticity. Cambridge University Press, Cambridge (2002)CrossRefMATH Gerstner, W., Kistler, W.: Spiking neurons models: single neurons, populations, plasticity. Cambridge University Press, Cambridge (2002)CrossRefMATH
8.
Zurück zum Zitat Haibin, S., Jingjing, B.: Maximum power point tracking algorithm based on fuzzy neural networks for photovoltaic generation system. pp. 353–357 (2010) Haibin, S., Jingjing, B.: Maximum power point tracking algorithm based on fuzzy neural networks for photovoltaic generation system. pp. 353–357 (2010)
9.
Zurück zum Zitat Hines, M., Eichner, H., Schürmann, F.: Neuron spitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. J. Comput. Neurosci. 25, 203–210 (2008)MathSciNetCrossRef Hines, M., Eichner, H., Schürmann, F.: Neuron spitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. J. Comput. Neurosci. 25, 203–210 (2008)MathSciNetCrossRef
10.
Zurück zum Zitat Hopfield, J., Brody, C.: What is a moment? transient synchrony as a collective mechanism for spatiotemporal integration. Proc. Natl. Acad. Sci. USA 98, 1282–1287 (2001)CrossRef Hopfield, J., Brody, C.: What is a moment? transient synchrony as a collective mechanism for spatiotemporal integration. Proc. Natl. Acad. Sci. USA 98, 1282–1287 (2001)CrossRef
11.
Zurück zum Zitat Hulea, M.: A model of silicon neurons suitable for speech recognition. Control Eng. Appl. Inform. 10, 32–41 (2008) Hulea, M.: A model of silicon neurons suitable for speech recognition. Control Eng. Appl. Inform. 10, 32–41 (2008)
12.
Zurück zum Zitat Hulea, M.: A new method to obtain non-volatile memory for networks of spiking neurons. Memoirs of Sci. Sect. XXXIII, 129–146 (2010) Hulea, M.: A new method to obtain non-volatile memory for networks of spiking neurons. Memoirs of Sci. Sect. XXXIII, 129–146 (2010)
13.
Zurück zum Zitat Hulea, M.: The mathematical model of a biologically inspired electronic neuron for ease the design of spiking neural networks topology. pp. 282–287 (2011) Hulea, M.: The mathematical model of a biologically inspired electronic neuron for ease the design of spiking neural networks topology. pp. 282–287 (2011)
14.
Zurück zum Zitat Hulea, M.: Using spiking neural networks for light spot tracking. In: 20th European Signal Processing Conference, pp. 1708–1712. Bucharest (2012) Hulea, M.: Using spiking neural networks for light spot tracking. In: 20th European Signal Processing Conference, pp. 1708–1712. Bucharest (2012)
15.
Zurück zum Zitat Hulea, M., Caruntu, C.: Spiking neural network for controlling the artificial muscles of a humanoid robotic arm. In: International Conference on System Theory, Control and Computing, pp. 163–168. Sinaia (2014) Hulea, M., Caruntu, C.: Spiking neural network for controlling the artificial muscles of a humanoid robotic arm. In: International Conference on System Theory, Control and Computing, pp. 163–168. Sinaia (2014)
16.
Zurück zum Zitat Izhikevich, E.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004)CrossRef Izhikevich, E.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004)CrossRef
18.
Zurück zum Zitat Jacob, V., Brasier, D., Erchova, I., Feldman, D., Shulz, D.: Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. J. Neurosci. 27, 1271–1284 (2007)CrossRef Jacob, V., Brasier, D., Erchova, I., Feldman, D., Shulz, D.: Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. J. Neurosci. 27, 1271–1284 (2007)CrossRef
19.
Zurück zum Zitat Jimenez-Fernandez, A., Jimenez-Moreno, G., Linarea-Barranco, A., Dominguez-Morales, M., Paz-Vicente, R., Civit-Balcells, A.: A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs. Sensors 12, 3831–3856 (2012)CrossRef Jimenez-Fernandez, A., Jimenez-Moreno, G., Linarea-Barranco, A., Dominguez-Morales, M., Paz-Vicente, R., Civit-Balcells, A.: A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs. Sensors 12, 3831–3856 (2012)CrossRef
20.
Zurück zum Zitat Jolivet, R., Lewis, T., Gerstner, W.: Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Neurophysiology 92, 959–976 (2004)CrossRef Jolivet, R., Lewis, T., Gerstner, W.: Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Neurophysiology 92, 959–976 (2004)CrossRef
21.
Zurück zum Zitat Joshi, P., Maass, W.: Movement generation with circuits of spiking neurons. Neur. Comput. 17, 1715–1738 (2005)CrossRefMATH Joshi, P., Maass, W.: Movement generation with circuits of spiking neurons. Neur. Comput. 17, 1715–1738 (2005)CrossRefMATH
22.
Zurück zum Zitat Kobayashi, R., Tsubo, Y., Shinomoto, S.: Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front. Comput. Neurosci. 3 (2009) Kobayashi, R., Tsubo, Y., Shinomoto, S.: Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front. Comput. Neurosci. 3 (2009)
23.
Zurück zum Zitat Lovelace, J., Cios, K.: A very simple spiking neuron model that allows for modeling of large, complex systems. Neural Comput. 20, 65–90 (2008)MathSciNetCrossRefMATH Lovelace, J., Cios, K.: A very simple spiking neuron model that allows for modeling of large, complex systems. Neural Comput. 20, 65–90 (2008)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Maass, W., Bishop, C.: Pulsed neural networks. The MIT Press, Cambridge (1998)MATH Maass, W., Bishop, C.: Pulsed neural networks. The MIT Press, Cambridge (1998)MATH
25.
Zurück zum Zitat Maass, W., Natschläger, T., Markram, H.: Computational models for generic cortical micro-circuits. Comput. Neurosci. A Compr. Approach pp. 575–605 (2004) Maass, W., Natschläger, T., Markram, H.: Computational models for generic cortical micro-circuits. Comput. Neurosci. A Compr. Approach pp. 575–605 (2004)
26.
Zurück zum Zitat Markram, H., Shurmann, F.: Fully implicit parallel simulation of single neurons. J. Comput. Neurosci. 25, 439–448 (2008)MathSciNetCrossRef Markram, H., Shurmann, F.: Fully implicit parallel simulation of single neurons. J. Comput. Neurosci. 25, 439–448 (2008)MathSciNetCrossRef
27.
Zurück zum Zitat OReylli, R., Munakata, Y.: Computational explorations in cognitive neuroscience. The MIT Press, Cambridge (2000) OReylli, R., Munakata, Y.: Computational explorations in cognitive neuroscience. The MIT Press, Cambridge (2000)
28.
Zurück zum Zitat Otieno, C., Nyakoe, G., Wekesa, C.: A neural fuzzy based maximum power point tracker for a photovoltaic system. In: AFRICON, pp. 1–6 (2009) Otieno, C., Nyakoe, G., Wekesa, C.: A neural fuzzy based maximum power point tracker for a photovoltaic system. In: AFRICON, pp. 1–6 (2009)
29.
Zurück zum Zitat Rast, A., Mukaram Khan, M., Jin, X., Plana, L., Furber, S.: Universal abstract-time platform for real-time neural networks, pp. 2611–2618. IEEE Press, Piscataway (2009) Rast, A., Mukaram Khan, M., Jin, X., Plana, L., Furber, S.: Universal abstract-time platform for real-time neural networks, pp. 2611–2618. IEEE Press, Piscataway (2009)
30.
Zurück zum Zitat Swiercz, W., Cios, K.: A new synaptic plasticity rule for networks of spiking neurons. IEEE Trans. Neural Netw. 17, 94–99 (2006)CrossRef Swiercz, W., Cios, K.: A new synaptic plasticity rule for networks of spiking neurons. IEEE Trans. Neural Netw. 17, 94–99 (2006)CrossRef
31.
Zurück zum Zitat Teh, Y.: Accurate force and position control of shape memory alloy actuators. Ph.D. thesis, The Australian National University (2008) Teh, Y.: Accurate force and position control of shape memory alloy actuators. Ph.D. thesis, The Australian National University (2008)
32.
Zurück zum Zitat Wong, Y., Sundareshan, M.: Data fusion and tracking of complex target maneuvers with a simplex-trained neural network-based architecture, pp. 1024–1029. Bucharest (1998) Wong, Y., Sundareshan, M.: Data fusion and tracking of complex target maneuvers with a simplex-trained neural network-based architecture, pp. 1024–1029. Bucharest (1998)
Metadaten
Titel
Bioinspired Control Method Based on Spiking Neural Networks and SMA Actuator Wires for LASER Spot Tracking
verfasst von
Mircea Hulea
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-26230-7_2

Premium Partner