Skip to main content
Top

2014 | OriginalPaper | Chapter

8. Biological Applications

Authors : Jiyang Fan, Paul K. Chu

Published in: Silicon Carbide Nanostructures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Silicon carbide is a well-known semiconductor with excellent biocompatibility and at least two factors contribute to this favorable characteristic. The first one is that the compound does not contain heavy metals which tend to be detrimental to the human body, and the second one is that neither silicon nor carbon causes deleterious effects such as cytotoxicity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ota T, Takahashi M, Hibi T, Ozawa M, Suzuki S, Hikichi Y, Suzuki H (1995) Biomimetic process for producing SiC “wood”. J Am Ceram Soc 78:3409–3411CrossRef Ota T, Takahashi M, Hibi T, Ozawa M, Suzuki S, Hikichi Y, Suzuki H (1995) Biomimetic process for producing SiC “wood”. J Am Ceram Soc 78:3409–3411CrossRef
2.
go back to reference Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood: I. processing and microstructure. J Eur Ceram Soc 18:1961–1973CrossRef Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood: I. processing and microstructure. J Eur Ceram Soc 18:1961–1973CrossRef
3.
go back to reference Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood: II. mechanical properties. J Eur Ceram Soc 18:1975–1983CrossRef Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood: II. mechanical properties. J Eur Ceram Soc 18:1975–1983CrossRef
4.
go back to reference Vogli E, Sieber H, Greil P (2002) Biomorphic SiC-ceramic prepared by Si-vapor phase infiltration of wood. J Eur Ceram Soc 22:2663–2668CrossRef Vogli E, Sieber H, Greil P (2002) Biomorphic SiC-ceramic prepared by Si-vapor phase infiltration of wood. J Eur Ceram Soc 22:2663–2668CrossRef
5.
go back to reference Vogli E, Mukerji J, Hoffman C, Kladny R, Sieber H, Greil P (2001) Conversion of oak to cellular silicon carbide ceramic by gas-phase reaction with silicon monoxide. J Am Ceram Soc 84:1236–1240CrossRef Vogli E, Mukerji J, Hoffman C, Kladny R, Sieber H, Greil P (2001) Conversion of oak to cellular silicon carbide ceramic by gas-phase reaction with silicon monoxide. J Am Ceram Soc 84:1236–1240CrossRef
6.
go back to reference Qian J-M, Wang J-P, Qiao G-J, Jin Z-H (2004) Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing. J Eur Ceram Soc 24:3251–3259CrossRef Qian J-M, Wang J-P, Qiao G-J, Jin Z-H (2004) Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing. J Eur Ceram Soc 24:3251–3259CrossRef
7.
go back to reference Shin Y, Wang C, Exarhos GJ (2005) Synthesis of SiC ceramics by the carbothermal reduction of mineralized wood with silica. Adv Mater 17:73–77CrossRef Shin Y, Wang C, Exarhos GJ (2005) Synthesis of SiC ceramics by the carbothermal reduction of mineralized wood with silica. Adv Mater 17:73–77CrossRef
8.
go back to reference Martínez-Fernández J, Valera-Feria FM, Singh M (2000) High temperature compressive mechanical behavior of joined biomorphic silicon carbide ceramics. Scripta Mater 43:813–818CrossRef Martínez-Fernández J, Valera-Feria FM, Singh M (2000) High temperature compressive mechanical behavior of joined biomorphic silicon carbide ceramics. Scripta Mater 43:813–818CrossRef
9.
go back to reference Singh M, Salem JA (2002) Mechanical properties and microstructure of biomorphic silicon carbide ceramics fabricated from wood precursors. J Eur Ceram Soc 22:2709–2717CrossRef Singh M, Salem JA (2002) Mechanical properties and microstructure of biomorphic silicon carbide ceramics fabricated from wood precursors. J Eur Ceram Soc 22:2709–2717CrossRef
10.
go back to reference González P, Serra J, Liste S, Chiussi S, León B, Pérez-Amor M, Martínez-Fernández J, de Arellano-López AR, Varela-Feria FM (2003) New biomorphic SiC ceramics coated with bioactive glass for biomedical applications. Biomaterials 24:4827–4832CrossRef González P, Serra J, Liste S, Chiussi S, León B, Pérez-Amor M, Martínez-Fernández J, de Arellano-López AR, Varela-Feria FM (2003) New biomorphic SiC ceramics coated with bioactive glass for biomedical applications. Biomaterials 24:4827–4832CrossRef
11.
go back to reference Aspenberg P, Anttila A, Konttinen YT, Lappalainen R, Goodman SB, Nordsletten L, Santavirta S (1996) Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits. Biomaterials 17:807–812CrossRef Aspenberg P, Anttila A, Konttinen YT, Lappalainen R, Goodman SB, Nordsletten L, Santavirta S (1996) Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits. Biomaterials 17:807–812CrossRef
12.
go back to reference Santavirta S, Takagi M, Nordsletten L, Anttila A, Lappalainen R, Konttinen YT (1998) Biocompatibility of silicon carbide in colony formation test in vitro. A promising new ceramic THR implant coating material. Arch Orthop Trauma Surg 118:89–91CrossRef Santavirta S, Takagi M, Nordsletten L, Anttila A, Lappalainen R, Konttinen YT (1998) Biocompatibility of silicon carbide in colony formation test in vitro. A promising new ceramic THR implant coating material. Arch Orthop Trauma Surg 118:89–91CrossRef
13.
go back to reference Cogan SF, Edell DJ, Guzelian AA, Liu YP, Edell R (2003) Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating. J Biomed Mater Res A. 67:856–867CrossRef Cogan SF, Edell DJ, Guzelian AA, Liu YP, Edell R (2003) Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating. J Biomed Mater Res A. 67:856–867CrossRef
14.
go back to reference Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRef Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRef
15.
go back to reference Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRef Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRef
16.
go back to reference Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRef Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRef
17.
go back to reference Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRef Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRef
18.
go back to reference Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRef Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRef
19.
go back to reference Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113:823–839CrossRef Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113:823–839CrossRef
20.
go back to reference Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49CrossRef Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49CrossRef
21.
go back to reference Fan J, Chu PK (2010) Group IV nanoparticles: synthesis, properties, and biological applications. Small 6:2080–2098CrossRef Fan J, Chu PK (2010) Group IV nanoparticles: synthesis, properties, and biological applications. Small 6:2080–2098CrossRef
22.
go back to reference Fan J, Li H, Jiang J, So LKY, Lam YW, Chu PK (2008) 3C-SiC nanocrystals as fluorescent biological labels. Small 4:1058–1062CrossRef Fan J, Li H, Jiang J, So LKY, Lam YW, Chu PK (2008) 3C-SiC nanocrystals as fluorescent biological labels. Small 4:1058–1062CrossRef
23.
go back to reference Barillet S, Simon-Deckers A, Herlin-Boime N, Mayne-L’Hermite M, Reynaud C, Cassio D, Gouget B, Carrière M (2010) Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J Nanopart Res 12:61–73CrossRef Barillet S, Simon-Deckers A, Herlin-Boime N, Mayne-L’Hermite M, Reynaud C, Cassio D, Gouget B, Carrière M (2010) Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J Nanopart Res 12:61–73CrossRef
24.
go back to reference Barillet S, Jugan M-L, Laye M, Leconte Y, Herlin-Boime N, Reynaud C, Carrière M (2010) In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett 198:324–330CrossRef Barillet S, Jugan M-L, Laye M, Leconte Y, Herlin-Boime N, Reynaud C, Carrière M (2010) In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett 198:324–330CrossRef
25.
go back to reference Pourchez J, Forest V, Boumahdi N, Boudard D, Tomatis M, Fubini B, Herlin-Boime N, Leconte Y, Guilhot B, Cottier M, Grosseau P (2012) In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects. J Nanopart Res 14:1143CrossRef Pourchez J, Forest V, Boumahdi N, Boudard D, Tomatis M, Fubini B, Herlin-Boime N, Leconte Y, Guilhot B, Cottier M, Grosseau P (2012) In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects. J Nanopart Res 14:1143CrossRef
26.
go back to reference Lozano O, Laloy J, Alpan L, Mejia J, Rolin S, Toussaint O, Dogné J-M, Lucas S, Masereel B (2012) Effects of SiC nanoparticles orally administered in a rat model: biodistribution, toxicity and elemental composition changes in feces and organs. Toxicol Appl Pharm 264:232–245CrossRef Lozano O, Laloy J, Alpan L, Mejia J, Rolin S, Toussaint O, Dogné J-M, Lucas S, Masereel B (2012) Effects of SiC nanoparticles orally administered in a rat model: biodistribution, toxicity and elemental composition changes in feces and organs. Toxicol Appl Pharm 264:232–245CrossRef
27.
go back to reference Serdiuk T, Lysenko V, Skryshevsky VA, Géloën A (2012) Vapor phase mediated cellular uptake of sub 5 nm nanoparticles. Nanoscale Res Lett 7:212CrossRef Serdiuk T, Lysenko V, Skryshevsky VA, Géloën A (2012) Vapor phase mediated cellular uptake of sub 5 nm nanoparticles. Nanoscale Res Lett 7:212CrossRef
28.
go back to reference Serdiuk T, Alekseev SA, Lysenko V, Skryshevsky VA, Géloën A (2012) Charge-driven selective localization of fluorescent nanoparticles in live cells. Nanotechnology 23:315101CrossRef Serdiuk T, Alekseev SA, Lysenko V, Skryshevsky VA, Géloën A (2012) Charge-driven selective localization of fluorescent nanoparticles in live cells. Nanotechnology 23:315101CrossRef
29.
go back to reference Serdiuk T, Lysenko V, Mognetti B, Skryshevsky V, Géloën A (2013) Impact of cell division on intracellular uptake and nuclear targeting with fluorescent SiC-based nanoparticles. J Biophotonics 6:291–297CrossRef Serdiuk T, Lysenko V, Mognetti B, Skryshevsky V, Géloën A (2013) Impact of cell division on intracellular uptake and nuclear targeting with fluorescent SiC-based nanoparticles. J Biophotonics 6:291–297CrossRef
30.
go back to reference Beke D, Szekrényes Z, Pálfi D, Róna G, Balogh I, Maák PA, Katona G, Czigány Z, Kamarás K, Rózsa B, Buday L, Vértessy B, Gali A (2013) Silicon carbide quantum dots for bioimaging. J Mater Res 28:205–209CrossRef Beke D, Szekrényes Z, Pálfi D, Róna G, Balogh I, Maák PA, Katona G, Czigány Z, Kamarás K, Rózsa B, Buday L, Vértessy B, Gali A (2013) Silicon carbide quantum dots for bioimaging. J Mater Res 28:205–209CrossRef
31.
go back to reference Birchall JD, Stanley DR, Mockford MJ, Pigott GH, Pinto PJ (1988) Toxicity of silicon carbide whiskers. J Mater Sci Lett 7:350–352CrossRef Birchall JD, Stanley DR, Mockford MJ, Pigott GH, Pinto PJ (1988) Toxicity of silicon carbide whiskers. J Mater Sci Lett 7:350–352CrossRef
32.
go back to reference Ogami A, Morimoto Y, Yamato H, Oyabu T, Akiyama I, Tanaka I (2001) Short term effect of silicon carbide whisker to the rat lung. Ind Health 39:175–182CrossRef Ogami A, Morimoto Y, Yamato H, Oyabu T, Akiyama I, Tanaka I (2001) Short term effect of silicon carbide whisker to the rat lung. Ind Health 39:175–182CrossRef
33.
go back to reference Morimoto Y, Ding L, Oyabu T, Hirohashi M, Kim H, Ogami A, Yamato H, Akiyama I, Hori H, Higashi T, Tanak I (2003) Expression of Clara cell secretory protein in the lungs of rats exposed to silicon carbide whisker in vivo. Toxicol Lett 145:273–279CrossRef Morimoto Y, Ding L, Oyabu T, Hirohashi M, Kim H, Ogami A, Yamato H, Akiyama I, Hori H, Higashi T, Tanak I (2003) Expression of Clara cell secretory protein in the lungs of rats exposed to silicon carbide whisker in vivo. Toxicol Lett 145:273–279CrossRef
34.
go back to reference Mwangi JN, Wang N, Ritts A, Kunz JL, Ingersoll CG, Li H, Deng B (2011) Toxicity of silicon carbide nanowires to sediment-dwelling invertebrates in water or sediment exposures. Environ Toxicol Chem 30:981–987CrossRef Mwangi JN, Wang N, Ritts A, Kunz JL, Ingersoll CG, Li H, Deng B (2011) Toxicity of silicon carbide nanowires to sediment-dwelling invertebrates in water or sediment exposures. Environ Toxicol Chem 30:981–987CrossRef
35.
go back to reference Jiang J, Wang J, Zhang X, Huo K, Wong HM, Yeung KWK, Zhang W, Hu T, Chu PK (2010) Activation of mitogen-activated protein kinases cellular signal transduction pathway in mammalian cells induced by silicon carbide nanowires. Biomaterials 31:7856–7862CrossRef Jiang J, Wang J, Zhang X, Huo K, Wong HM, Yeung KWK, Zhang W, Hu T, Chu PK (2010) Activation of mitogen-activated protein kinases cellular signal transduction pathway in mammalian cells induced by silicon carbide nanowires. Biomaterials 31:7856–7862CrossRef
36.
go back to reference Rosenbloom AJ, Sipe DM, Shishkin Y, Ke Y, Devaty RP, Choyke WJ (2004) Nanoporous SiC: a candidate semi-permeable material for biomedical applications. Biomed Microdevices 6:261–267CrossRef Rosenbloom AJ, Sipe DM, Shishkin Y, Ke Y, Devaty RP, Choyke WJ (2004) Nanoporous SiC: a candidate semi-permeable material for biomedical applications. Biomed Microdevices 6:261–267CrossRef
Metadata
Title
Biological Applications
Authors
Jiyang Fan
Paul K. Chu
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-08726-9_8

Premium Partners