Skip to main content
Top

2015 | OriginalPaper | Chapter

Biomechanical Modeling of the Respiratory System: Human Diaphragm and Thorax

Authors : Hamid Ladjal, Joseph Azencot, Michael Beuve, Philippe Giraud, Jean Michel Moreau, Behzad Shariat

Published in: Computational Biomechanics for Medicine

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Patient-specific respiratory motion modeling may help to understand pathophysiology and predict therapy planning. The respiratory motion modifies the shape and position of internal organs. This may degrade the quality of such medical acts as radiotherapy or laparoscopy. Predicting the breathing movement is complex, and it is considered as one of the most challenging areas of medical research. This paper presents a biomechanical model of the respiratory system, based on the finite element method (FEM), including the biomechanical behavior of the diaphragm as well as rib kinematics computations, on the assumption that breathing is controlled by two independent actors: the thorax and diaphragm muscles. In order to predict the type of the (geometrical or material) nonlinearities, a quantitative comparison of the clinical data was applied on 12 patients. We propose two nonlinear hyperelastic models: the Saint-Venant Kirchhoff and Mooney–Rivlin models. Our results demonstrate that the nonlinear hyperelastic Mooney–Rivlin model of the diaphragm behaves similarly to the linear elastic model with large displacement (Saint-Venant Kirchhoff). The results suggest that the approach of small strains (within the large displacement) may be globally maintained in the modeling of the diaphragm, and demonstrate that the accuracy of the proposed FEM is capable to predict the respiratory motion with an average surface error in a diaphragm/lungs region of interest contact of 2. 0 ± 2. 3 mm for the contact surface between lungs and diaphragm. The comparison study between the FEM simulations and the CT scan images demonstrates the effectiveness of our physics-based model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The FE code Abaqus is developed by SIMULIA.
 
Literature
1.
go back to reference Ehrhardt, J., Lorenz, C.: 4D modeling and estimation of respiratory motion for radiation therapy. Springer, Berlin (2013). ISBN 978-3-642-36441-9CrossRef Ehrhardt, J., Lorenz, C.: 4D modeling and estimation of respiratory motion for radiation therapy. Springer, Berlin (2013). ISBN 978-3-642-36441-9CrossRef
2.
go back to reference Wu, K.L., Jiang, G.L., Liao, Y., Qian, H., Wang, L.J., Fu, X.L., Zhao, S.: Threedimensional conformal radiation therapy for non-small-cell lung cancer: a phase I/II dose escalation clinical trial. Int. J. Rad. Oncol. Biol. Phys. 57(5), 1336–1344 (2003)CrossRef Wu, K.L., Jiang, G.L., Liao, Y., Qian, H., Wang, L.J., Fu, X.L., Zhao, S.: Threedimensional conformal radiation therapy for non-small-cell lung cancer: a phase I/II dose escalation clinical trial. Int. J. Rad. Oncol. Biol. Phys. 57(5), 1336–1344 (2003)CrossRef
3.
go back to reference Sura, S., Gupta, V., Yorke, E., Jackson, A., Amols, H., Rosenzweig, K.E.: Intensity modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Radiother. Oncol. 87(1), 17–23 (2008)CrossRef Sura, S., Gupta, V., Yorke, E., Jackson, A., Amols, H., Rosenzweig, K.E.: Intensity modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Radiother. Oncol. 87(1), 17–23 (2008)CrossRef
4.
go back to reference Hiraoka, M., Matsuo, Y., Takayama, K.: Stereotactic body radiation therapy for lung cancer: achievements and perspectives. Jpn. J. Clin. Oncol. 40(9), 846–854 (2010)CrossRef Hiraoka, M., Matsuo, Y., Takayama, K.: Stereotactic body radiation therapy for lung cancer: achievements and perspectives. Jpn. J. Clin. Oncol. 40(9), 846–854 (2010)CrossRef
5.
go back to reference Nakayama, H., Sugahara, S., Tokita, M., Satoh, H., Tsuboi, K., Ishikawa, S., Tokuuye, K.: Proton beam therapy for patients with medically inoperable stage I non-small-cell lung cancer at the university of Tsukuba. Int. J. Radiat. Oncol. Biol. Phys. 78(2), 467–471 (2010)CrossRef Nakayama, H., Sugahara, S., Tokita, M., Satoh, H., Tsuboi, K., Ishikawa, S., Tokuuye, K.: Proton beam therapy for patients with medically inoperable stage I non-small-cell lung cancer at the university of Tsukuba. Int. J. Radiat. Oncol. Biol. Phys. 78(2), 467–471 (2010)CrossRef
6.
go back to reference Shirato, H., et al.: Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy. Int. J. Rad Onco Biol. Phys. 64(4), 1229–1236 (2006)CrossRef Shirato, H., et al.: Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy. Int. J. Rad Onco Biol. Phys. 64(4), 1229–1236 (2006)CrossRef
7.
go back to reference Promayon, E., Baconnier, P.: A 3D discrete model of the diaphragm and human trunk. In: ESAIM: Proceedings, pp. 66–77 (2008) Promayon, E., Baconnier, P.: A 3D discrete model of the diaphragm and human trunk. In: ESAIM: Proceedings, pp. 66–77 (2008)
8.
go back to reference Villard, P.F., Bourne, W., Bello, F.: Interactive simulation of diaphragm motion through muscle and rib kinematics. In: Recent Advances in the 3D Physiological Human, pp. 91–103. Springer, London (2009) Villard, P.F., Bourne, W., Bello, F.: Interactive simulation of diaphragm motion through muscle and rib kinematics. In: Recent Advances in the 3D Physiological Human, pp. 91–103. Springer, London (2009)
9.
go back to reference Hostettler, A., George, D., Rémond, Y., Nicolau, S.A., Soler, L., Marescaux, J.: Bulk modulus and volume variation measurement of the liver and the kidneys in vivo using abdominal kinetics during free breathing. Comput. Methods Programs Biomed. 100(2), 149–157 (2010)CrossRef Hostettler, A., George, D., Rémond, Y., Nicolau, S.A., Soler, L., Marescaux, J.: Bulk modulus and volume variation measurement of the liver and the kidneys in vivo using abdominal kinetics during free breathing. Comput. Methods Programs Biomed. 100(2), 149–157 (2010)CrossRef
10.
go back to reference Fuerst, B., et al.: A personalized biomechanical model for respiratory motion prediction. MICCAI 15(3), 566–573 (2012) Fuerst, B., et al.: A personalized biomechanical model for respiratory motion prediction. MICCAI 15(3), 566–573 (2012)
11.
go back to reference Behr, M., Pérès, J., Llari, M., Godio, Y., Jammes, Y., Brunet, C.: A three-dimensional human trunk model for the analysis of respiratory mechanics. J. Biomech. Eng. 132, 014501-1-014501-4 (2010) Behr, M., Pérès, J., Llari, M., Godio, Y., Jammes, Y., Brunet, C.: A three-dimensional human trunk model for the analysis of respiratory mechanics. J. Biomech. Eng. 132, 014501-1-014501-4 (2010)
12.
go back to reference Pato, M., et al.: Finite element studies of the mechanical behaviour of the diaphragm in normal and pathological cases. CMBBE 14(6), 505–513 (2011)MathSciNet Pato, M., et al.: Finite element studies of the mechanical behaviour of the diaphragm in normal and pathological cases. CMBBE 14(6), 505–513 (2011)MathSciNet
13.
go back to reference Cluzel, P., Similovsky, T., Lefebvre, C., Zelter, M., Derenne, J.P., Grenier, P.: Diaphragm and chest wall: assessment of the inspiratory pump with MR imaging - preliminary observations. Radiology 215, 574–583 (2000)CrossRef Cluzel, P., Similovsky, T., Lefebvre, C., Zelter, M., Derenne, J.P., Grenier, P.: Diaphragm and chest wall: assessment of the inspiratory pump with MR imaging - preliminary observations. Radiology 215, 574–583 (2000)CrossRef
14.
go back to reference Didier, A.L., Villard, P.F., Saade, J., Moreau, J.M., Beuve, M., Shariat, B.: A chest wall model based on rib kinematics. In: IEEE ICV, pp. 159–164 (2009) Didier, A.L., Villard, P.F., Saade, J., Moreau, J.M., Beuve, M., Shariat, B.: A chest wall model based on rib kinematics. In: IEEE ICV, pp. 159–164 (2009)
15.
go back to reference Ladjal, H., Shariat, B., Azencot, J., Beuve, M.: Appropriate biomechanics and kinematics modeling of the respiratory system: human diaphragm and thorax. In: IEEE IROS (2013) Ladjal, H., Shariat, B., Azencot, J., Beuve, M.: Appropriate biomechanics and kinematics modeling of the respiratory system: human diaphragm and thorax. In: IEEE IROS (2013)
16.
go back to reference Kimpara, H., et al.: Development of a three-dimensional finite element chest model for the 5(th) percentile female. Stapp Car Crash J. 49, 251–269 (2005) Kimpara, H., et al.: Development of a three-dimensional finite element chest model for the 5(th) percentile female. Stapp Car Crash J. 49, 251–269 (2005)
17.
go back to reference Abe, H., Hayashi, K., Sato, M. (eds.): Data Book on Mechanical Properties of Living Cells, Tissues, and Organs. Springer (1996) Abe, H., Hayashi, K., Sato, M. (eds.): Data Book on Mechanical Properties of Living Cells, Tissues, and Organs. Springer (1996)
18.
go back to reference Yamada, H.: In: Evean, F.G. (ed.) Strength of Biological Materials. The Williams & Wilkins Company, Baltimore (1970) Yamada, H.: In: Evean, F.G. (ed.) Strength of Biological Materials. The Williams & Wilkins Company, Baltimore (1970)
Metadata
Title
Biomechanical Modeling of the Respiratory System: Human Diaphragm and Thorax
Authors
Hamid Ladjal
Joseph Azencot
Michael Beuve
Philippe Giraud
Jean Michel Moreau
Behzad Shariat
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-15503-6_10