Skip to main content
Top

2019 | OriginalPaper | Chapter

2. Biomedical Signals

Authors : Nilanjan Dey, Amira S. Ashour, Waleed S. Mohamed, Nhu Gia Nguyen

Published in: Acoustic Sensors for Biomedical Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In our daily life, sensors are corporate in several devices and applications for a better life. Such sensors as the tactile sensors are included in the touch screens and the computers’ touch pads. The input of these sensors is from the environment that converted into an electrical signal for further processing in the sensor system. The sensor’s main role is to measure a specific quantity and create a signal for interpretation. The human bodies continuously communicate health information that reflects the status of the body organs and the overall health information. Such information is typically captured by physical devices that measure different types of information, such as measuring the brain activity, blood glucose, blood pressure, heart rate, nerve conduction, and so forth. According to these measurements, physicians decide the diagnosis and treatment decisions. Engineers are realizing new acquiring devices to measure noninvasively the different types of signals for further analysis using mathematical algorithms and formulae. This chapter includes classifications of the biosignals based on several principles. In addition, the different biosensors are highlighted including the role of the biopotential amplifier stage within the sensor system. Finally, the biomedical signal acquisition and processing phases are also included.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Marchionini, G. (1997). Information seeking in electronic environments (Vol. 9). New York: Cambridge University Press. Marchionini, G. (1997). Information seeking in electronic environments (Vol. 9). New York: Cambridge University Press.
2.
go back to reference Yilmaz, T., Foster, R., & Hao, Y. (2010). Detecting vital signs with wearable wireless sensors. Sensors, 10(12), 10837–10862.CrossRef Yilmaz, T., Foster, R., & Hao, Y. (2010). Detecting vital signs with wearable wireless sensors. Sensors, 10(12), 10837–10862.CrossRef
3.
go back to reference Dey, N., & Ashour, A. S. (2018). Sources localization and DOAE techniques of moving multiple sources. In Direction of arrival estimation and localization of multi-speech sources (pp. 23–34). Cham: Springer.CrossRef Dey, N., & Ashour, A. S. (2018). Sources localization and DOAE techniques of moving multiple sources. In Direction of arrival estimation and localization of multi-speech sources (pp. 23–34). Cham: Springer.CrossRef
4.
go back to reference Dey, N., & Ashour, A. S. (2018). Computing in medical image analysis. In Soft computing based medical image analysis (pp. 3–11).CrossRef Dey, N., & Ashour, A. S. (2018). Computing in medical image analysis. In Soft computing based medical image analysis (pp. 3–11).CrossRef
5.
go back to reference Elhayatmy, G., Dey, N., & Ashour, A. S. (2018). Internet of things based wireless body area network in healthcare. In Internet of things and big data analytics toward next-generation intelligence (pp. 3–20). Cham: Springer.CrossRef Elhayatmy, G., Dey, N., & Ashour, A. S. (2018). Internet of things based wireless body area network in healthcare. In Internet of things and big data analytics toward next-generation intelligence (pp. 3–20). Cham: Springer.CrossRef
6.
go back to reference Ghaderi, F. (2010). Signal processing techniques for extracting signals with periodic structure: Applications to biomedical signals. Cardiff University. Ghaderi, F. (2010). Signal processing techniques for extracting signals with periodic structure: Applications to biomedical signals. Cardiff University.
7.
go back to reference Odinaka, I. C. (2014). Identifying humans by the shape of their heartbeats and materials by their X-ray scattering profiles. Washington University in St. Louis. Odinaka, I. C. (2014). Identifying humans by the shape of their heartbeats and materials by their X-ray scattering profiles. Washington University in St. Louis.
8.
go back to reference Haraldsson, H., Edenbrandt, L., & Ohlsson, M. (2004). Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural networks. Artificial Intelligence in Medicine, 32(2), 127–136. Haraldsson, H., Edenbrandt, L., & Ohlsson, M. (2004). Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural networks. Artificial Intelligence in Medicine, 32(2), 127–136.
9.
go back to reference Dey, N., & Ashour, A. S. (2018). Applied examples and applications of localization and tracking problem of multiple speech sources. In Direction of arrival estimation and localization of multi-speech sources (pp. 35–48). Cham: Springer.CrossRef Dey, N., & Ashour, A. S. (2018). Applied examples and applications of localization and tracking problem of multiple speech sources. In Direction of arrival estimation and localization of multi-speech sources (pp. 35–48). Cham: Springer.CrossRef
10.
go back to reference Jiminez Gonzalez, A. (2010). Antenatal foetal monitoring through abdominal phonogram recordings: A single-channel independent component approach (Doctoral dissertation, University of Southampton). Jiminez Gonzalez, A. (2010). Antenatal foetal monitoring through abdominal phonogram recordings: A single-channel independent component approach (Doctoral dissertation, University of Southampton).
11.
go back to reference Dickhaus, H., & Heinrich, H. (1996). Classifying biosignals with wavelet networks [a method for noninvasive diagnosis]. IEEE Engineering in Medicine and Biology Magazine, 15(5), 103–111.CrossRef Dickhaus, H., & Heinrich, H. (1996). Classifying biosignals with wavelet networks [a method for noninvasive diagnosis]. IEEE Engineering in Medicine and Biology Magazine, 15(5), 103–111.CrossRef
12.
go back to reference Mar, T., Zaunseder, S., Martínez, J. P., Llamedo, M., & Poll, R. (2011). Optimization of ECG classification by means of feature selection. IEEE Transactions on Biomedical Engineering, 58(8), 2168–2177.CrossRef Mar, T., Zaunseder, S., Martínez, J. P., Llamedo, M., & Poll, R. (2011). Optimization of ECG classification by means of feature selection. IEEE Transactions on Biomedical Engineering, 58(8), 2168–2177.CrossRef
13.
go back to reference Tavakolian, K., Nasrabadi, A. M., & Rezaei, S. (2004, May). Selecting better EEG channels for classification of mental tasks. In Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on (Vol. 3, pp. III–537). IEEE. Tavakolian, K., Nasrabadi, A. M., & Rezaei, S. (2004, May). Selecting better EEG channels for classification of mental tasks. In Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on (Vol. 3, pp. III–537). IEEE.
14.
go back to reference Arvaneh, M., Guan, C., Ang, K. K., & Quek, C. (2011). Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Transactions on Biomedical Engineering, 58(6), 1865–1873.CrossRef Arvaneh, M., Guan, C., Ang, K. K., & Quek, C. (2011). Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Transactions on Biomedical Engineering, 58(6), 1865–1873.CrossRef
15.
go back to reference Martínez-Vargas, J. D., Godino-Llorente, J. I., & Castellanos-Dominguez, G. (2012). Time–frequency based feature selection for discrimination of non-stationary biosignals. EURASIP Journal on Advances in Signal Processing, 2012(1), 219.CrossRef Martínez-Vargas, J. D., Godino-Llorente, J. I., & Castellanos-Dominguez, G. (2012). Time–frequency based feature selection for discrimination of non-stationary biosignals. EURASIP Journal on Advances in Signal Processing, 2012(1), 219.CrossRef
16.
go back to reference Vidaurre, C., Sander, T. H., & Schlögl, A. (2011). BioSig: The free and open source software library for biomedical signal processing. Computational Intelligence and Neuroscience, 2011. Vidaurre, C., Sander, T. H., & Schlögl, A. (2011). BioSig: The free and open source software library for biomedical signal processing. Computational Intelligence and Neuroscience, 2011.
17.
go back to reference Zhang, Z., Song, Y., Cui, H., Wu, J., Schwartz, F., & Qi, H. (2017). Topological analysis and Gaussian decision tree: Effective representation and classification of biosignals of small sample size. IEEE Transactions on Biomedical Engineering, 64(9), 2288–2299.CrossRef Zhang, Z., Song, Y., Cui, H., Wu, J., Schwartz, F., & Qi, H. (2017). Topological analysis and Gaussian decision tree: Effective representation and classification of biosignals of small sample size. IEEE Transactions on Biomedical Engineering, 64(9), 2288–2299.CrossRef
18.
go back to reference Georgieva, O., Milanov, S., & Georgieva, P. (2014). Unsupervised EEG biosignal discrimination. International Journal of Reasoning-based Intelligent Systems, 6(3–4), 118–125.CrossRef Georgieva, O., Milanov, S., & Georgieva, P. (2014). Unsupervised EEG biosignal discrimination. International Journal of Reasoning-based Intelligent Systems, 6(3–4), 118–125.CrossRef
19.
go back to reference Cuesta-Frau, D., Pérez-Cortes, J. C., Andreu-García, G., & Novák, D. (2002). Feature extraction methods applied to the clustering of electrocardiographic signals. A comparative study. In Pattern Recognition, 2002. Proceedings. 16th International Conference on (Vol. 3, pp. 961–964). IEEE. Cuesta-Frau, D., Pérez-Cortes, J. C., Andreu-García, G., & Novák, D. (2002). Feature extraction methods applied to the clustering of electrocardiographic signals. A comparative study. In Pattern Recognition, 2002. Proceedings. 16th International Conference on (Vol. 3, pp. 961–964). IEEE.
20.
go back to reference Kim, J., Mastnik, S., & André, E. (2008, January). EMG-based hand gesture recognition for realtime biosignal interfacing. In Proceedings of the 13th international conference on Intelligent user interfaces (pp. 30–39). ACM. Kim, J., Mastnik, S., & André, E. (2008, January). EMG-based hand gesture recognition for realtime biosignal interfacing. In Proceedings of the 13th international conference on Intelligent user interfaces (pp. 30–39). ACM.
21.
go back to reference Prutchi, D., & Norris, M. (2005). Design and development of medical electronic instrumentation: A practical perspective of the design, construction, and test of medical devices. Hoboken: Wiley. Prutchi, D., & Norris, M. (2005). Design and development of medical electronic instrumentation: A practical perspective of the design, construction, and test of medical devices. Hoboken: Wiley.
22.
go back to reference Kramme, R., Hoffmann, K. P., & Pozos, R. S. (Eds.). (2011). Springer handbook of medical technology. New York: Springer Science & Business Media. Kramme, R., Hoffmann, K. P., & Pozos, R. S. (Eds.). (2011). Springer handbook of medical technology. New York: Springer Science & Business Media.
23.
go back to reference Bronzino, J. D. (2006). Biomedical signals: Origin and dynamic characteristics; frequency-domain analysis. In Medical devices and systems (pp. 27–48). CRC Press. Bronzino, J. D. (2006). Biomedical signals: Origin and dynamic characteristics; frequency-domain analysis. In Medical devices and systems (pp. 27–48). CRC Press.
24.
go back to reference Bronzino, J. D. (Ed.). (2006). Medical devices and systems. Boca Raton: CRC Press. Bronzino, J. D. (Ed.). (2006). Medical devices and systems. Boca Raton: CRC Press.
25.
go back to reference Berntson, G. G., Quigley, K. S., & Lozano, D. (2007). Cardiovascular psychophysiology. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (Vol. 3, pp. 182–210). Cambridge: Cambridge University Press.CrossRef Berntson, G. G., Quigley, K. S., & Lozano, D. (2007). Cardiovascular psychophysiology. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (Vol. 3, pp. 182–210). Cambridge: Cambridge University Press.CrossRef
26.
go back to reference Casaccia, S., Sirevaag, E. J., Richter, E., O'Sullivan, J. A., Scalise, L., & Rohrbaugh, J. W. (2014, May). Decoding carotid pressure waveforms recorded by laser Doppler vibrometry: Effects of rebreathing. In AIP Conference Proceedings (Vol. 1600, No. 1, pp. 298–312). AIP. Casaccia, S., Sirevaag, E. J., Richter, E., O'Sullivan, J. A., Scalise, L., & Rohrbaugh, J. W. (2014, May). Decoding carotid pressure waveforms recorded by laser Doppler vibrometry: Effects of rebreathing. In AIP Conference Proceedings (Vol. 1600, No. 1, pp. 298–312). AIP.
27.
go back to reference Soleymani, S., Borzage, M., Noori, S., & Seri, I. (2012). Neonatal hemodynamics: Monitoring, data acquisition and analysis. Expert Review of Medical Devices, 9(5), 501–511.CrossRef Soleymani, S., Borzage, M., Noori, S., & Seri, I. (2012). Neonatal hemodynamics: Monitoring, data acquisition and analysis. Expert Review of Medical Devices, 9(5), 501–511.CrossRef
28.
go back to reference Kaniusas, E. (2015). Biomedical signals and sensors II. Berlin\Heidelberg: Springer.CrossRef Kaniusas, E. (2015). Biomedical signals and sensors II. Berlin\Heidelberg: Springer.CrossRef
29.
go back to reference Liu, Y., Norton, J. J., Qazi, R., Zou, Z., Ammann, K. R., Liu, H., Yan, L., Tran, P. L., Jang, K., Lee, J. W., Zhang, D., Kilian, K. A., Jung, S. H., Bretl, T., Xiao, J., Slepian, M. J., Huang, Y., Jeong, J., & Rogers, J. A. (2016). Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Science Advances, 2(11), e1601185.CrossRef Liu, Y., Norton, J. J., Qazi, R., Zou, Z., Ammann, K. R., Liu, H., Yan, L., Tran, P. L., Jang, K., Lee, J. W., Zhang, D., Kilian, K. A., Jung, S. H., Bretl, T., Xiao, J., Slepian, M. J., Huang, Y., Jeong, J., & Rogers, J. A. (2016). Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Science Advances, 2(11), e1601185.CrossRef
30.
go back to reference Alamdari, N. T. (2016). A morphological approach to identify respiratory phases of seismocardiogram. The University of North Dakota. Alamdari, N. T. (2016). A morphological approach to identify respiratory phases of seismocardiogram. The University of North Dakota.
31.
go back to reference Fay, C. (2013). Investigation into strategies for harvesting chemical based information using digital imaging and infra-red sensors for environmental and health applications (Doctoral dissertation, Dublin City University). Fay, C. (2013). Investigation into strategies for harvesting chemical based information using digital imaging and infra-red sensors for environmental and health applications (Doctoral dissertation, Dublin City University).
32.
go back to reference Kaniusas, E. (2012). Fundamentals of biosignals. In Biomedical signals and sensors I (pp. 1–26). Berlin\Heidelberg: Springer.CrossRef Kaniusas, E. (2012). Fundamentals of biosignals. In Biomedical signals and sensors I (pp. 1–26). Berlin\Heidelberg: Springer.CrossRef
33.
go back to reference Safieddine, D., Kachenoura, A., Albera, L., Birot, G., Karfoul, A., Pasnicu, A., Biraben, A., Wendling, F., Senhadji, L., & Merlet, I. (2012). Removal of muscle artifact from EEG data: Comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP Journal on Advances in Signal Processing, 2012(1), 127. Safieddine, D., Kachenoura, A., Albera, L., Birot, G., Karfoul, A., Pasnicu, A., Biraben, A., Wendling, F., Senhadji, L., & Merlet, I. (2012). Removal of muscle artifact from EEG data: Comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP Journal on Advances in Signal Processing, 2012(1), 127.
34.
go back to reference Sontakay, R. (2018). Real-time signal analysis of the ECG signal for generating an artificial pulse for continuous flow blood pumps using virtual instrumentation (Doctoral dissertation, California State University, Northridge). Sontakay, R. (2018). Real-time signal analysis of the ECG signal for generating an artificial pulse for continuous flow blood pumps using virtual instrumentation (Doctoral dissertation, California State University, Northridge).
35.
go back to reference Dey, N., & Ashour, A. S. (2017). Direction of arrival estimation and localization of multi-speech sources. Springer Science and Business Media. Dey, N., & Ashour, A. S. (2017). Direction of arrival estimation and localization of multi-speech sources. Springer Science and Business Media.
36.
go back to reference Ashour, A. S., Dey, N., & Mohamed, W. S. (2016). Abdominal imaging in clinical applications: Computer aided diagnosis approaches. In Medical imaging in clinical applications (pp. 3–17). Cham: Springer.CrossRef Ashour, A. S., Dey, N., & Mohamed, W. S. (2016). Abdominal imaging in clinical applications: Computer aided diagnosis approaches. In Medical imaging in clinical applications (pp. 3–17). Cham: Springer.CrossRef
37.
go back to reference Dey, N., Hassanien, A. E., Bhatt, C., Ashour, A., & Satapathy, S. C. (Eds.). (2018). Internet of things and big data analytics toward next-generation intelligence. Cham: Springer. Dey, N., Hassanien, A. E., Bhatt, C., Ashour, A., & Satapathy, S. C. (Eds.). (2018). Internet of things and big data analytics toward next-generation intelligence. Cham: Springer.
38.
go back to reference Gospodinova, E., Gospodinov, M., Dey, N., Domuschiev, I., Ashour, A. S., Balas, S. V., & Olariu, T. (2016, August). Specialized software system for heart rate variability analysis: An implementation of nonlinear graphical methods. In International workshop soft computing applications (pp. 367–374). Cham: Springer. Gospodinova, E., Gospodinov, M., Dey, N., Domuschiev, I., Ashour, A. S., Balas, S. V., & Olariu, T. (2016, August). Specialized software system for heart rate variability analysis: An implementation of nonlinear graphical methods. In International workshop soft computing applications (pp. 367–374). Cham: Springer.
39.
go back to reference Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical and biological engineering and computing, 44(12), 1031–1051. Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical and biological engineering and computing, 44(12), 1031–1051.
40.
go back to reference Soni, Y., Jain, J. K., Meena, R. S., & Maheshwari, R. (2017, May). HRV analysis of young adults in pre-meal and post-meal stage. In Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2017 2nd IEEE International Conference on (pp. 1125–1129). IEEE. Soni, Y., Jain, J. K., Meena, R. S., & Maheshwari, R. (2017, May). HRV analysis of young adults in pre-meal and post-meal stage. In Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2017 2nd IEEE International Conference on (pp. 1125–1129). IEEE.
41.
go back to reference Ronkainen, N. J., Halsall, H. B., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39(5), 1747–1763.CrossRef Ronkainen, N. J., Halsall, H. B., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39(5), 1747–1763.CrossRef
42.
go back to reference Scheller, F., Schubert, F., Pfeiffer, D., Hintsche, R., Dransfeld, I., Renneberg, R., Wollenberger, U., Riedel, K., Pavlova, M., Kuhn, M., Muller, H. G., Tan, P., Hoffmann, W., & Movitz, W. (1989). Research and development of biosensors. A review. Analyst, 114(6), 653–662.CrossRef Scheller, F., Schubert, F., Pfeiffer, D., Hintsche, R., Dransfeld, I., Renneberg, R., Wollenberger, U., Riedel, K., Pavlova, M., Kuhn, M., Muller, H. G., Tan, P., Hoffmann, W., & Movitz, W. (1989). Research and development of biosensors. A review. Analyst, 114(6), 653–662.CrossRef
43.
go back to reference Kriz, D., Ramström, O., & Mosbach, K. (1997). Peer reviewed: Molecular imprinting: New possibilities for sensor technology. Analytical Chemistry, 69(11), 345A–349A.CrossRef Kriz, D., Ramström, O., & Mosbach, K. (1997). Peer reviewed: Molecular imprinting: New possibilities for sensor technology. Analytical Chemistry, 69(11), 345A–349A.CrossRef
44.
go back to reference Deisingh, A. K., & Thompson, M. (2004). Biosensors for the detection of bacteria. Canadian Journal of Microbiology, 50(2), 69–77.CrossRef Deisingh, A. K., & Thompson, M. (2004). Biosensors for the detection of bacteria. Canadian Journal of Microbiology, 50(2), 69–77.CrossRef
45.
go back to reference Shah, J., & Wilkins, E. (2003). Electrochemical biosensors for detection of biological warfare agents. Electroanalysis, 15(3), 157–167.CrossRef Shah, J., & Wilkins, E. (2003). Electrochemical biosensors for detection of biological warfare agents. Electroanalysis, 15(3), 157–167.CrossRef
46.
go back to reference Rodriguez-Mozaz, S., Marco, M. P., de Alda, M. J. L., & Barceló, D. (2004). Biosensors for environmental monitoring of endocrine disruptors: A review article. Analytical and Bioanalytical Chemistry, 378(3), 588–598.CrossRef Rodriguez-Mozaz, S., Marco, M. P., de Alda, M. J. L., & Barceló, D. (2004). Biosensors for environmental monitoring of endocrine disruptors: A review article. Analytical and Bioanalytical Chemistry, 378(3), 588–598.CrossRef
47.
go back to reference Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112(5), 2739–2779.CrossRef Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112(5), 2739–2779.CrossRef
48.
go back to reference Herold, M., Scepan, J., & Clarke, K. C. (2002). The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environment and Planning A, 34(8), 1443–1458.CrossRef Herold, M., Scepan, J., & Clarke, K. C. (2002). The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environment and Planning A, 34(8), 1443–1458.CrossRef
49.
go back to reference Mac Ruairí, R., Keane, M. T., & Coleman, G. (2008, August). A wireless sensor network application requirements taxonomy. In Sensor Technologies and Applications, 2008. SENSORCOMM'08. Second International Conference on (pp. 209–216). IEEE. Mac Ruairí, R., Keane, M. T., & Coleman, G. (2008, August). A wireless sensor network application requirements taxonomy. In Sensor Technologies and Applications, 2008. SENSORCOMM'08. Second International Conference on (pp. 209–216). IEEE.
50.
go back to reference Gnawali, O., Yarvis, M., Heidemann, J., & Govindan, R. (2004, October). Interaction of retransmission, blacklisting, and routing metrics for reliability in sensor network routing. In Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on (pp. 34–43). IEEE. Gnawali, O., Yarvis, M., Heidemann, J., & Govindan, R. (2004, October). Interaction of retransmission, blacklisting, and routing metrics for reliability in sensor network routing. In Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on (pp. 34–43). IEEE.
51.
go back to reference Boccippio, D. J., Koshak, W., Blakeslee, R., Driscoll, K., Mach, D., Buechler, D., Boeck, W., Christian, H. J., & Goodman, S. J. (2000). The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. Journal of Atmospheric and Oceanic Technology, 17(4), 441–458.CrossRef Boccippio, D. J., Koshak, W., Blakeslee, R., Driscoll, K., Mach, D., Buechler, D., Boeck, W., Christian, H. J., & Goodman, S. J. (2000). The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. Journal of Atmospheric and Oceanic Technology, 17(4), 441–458.CrossRef
52.
go back to reference Rothrock, R. L., & Drummond, O. E. (2000, July). Performance metrics for multiple-sensor multiple-target tracking. In Signal and Data Processing of Small Targets 2000 (Vol. 4048, pp. 521–532). International Society for Optics and Photonics. Rothrock, R. L., & Drummond, O. E. (2000, July). Performance metrics for multiple-sensor multiple-target tracking. In Signal and Data Processing of Small Targets 2000 (Vol. 4048, pp. 521–532). International Society for Optics and Photonics.
53.
go back to reference Nagel, J. H. (2000). Biopotential amplifiers. In J. D. Bronzino (Ed.), Biomedical engineering hand book (2nd ed., pp. 70–71). New York: Springer-Verlag. Nagel, J. H. (2000). Biopotential amplifiers. In J. D. Bronzino (Ed.), Biomedical engineering hand book (2nd ed., pp. 70–71). New York: Springer-Verlag.
54.
go back to reference Zhou, G., Wang, Y., & Cui, L. (2015). Biomedical sensor, device and measurement systems. In Advances in Bioengineering. InTech. Zhou, G., Wang, Y., & Cui, L. (2015). Biomedical sensor, device and measurement systems. In Advances in Bioengineering. InTech.
55.
go back to reference Denison, T. J., Jensen, R. M., & Santa, W. A. (2009). U.S. Patent Application No. 12/237,868. Denison, T. J., Jensen, R. M., & Santa, W. A. (2009). U.S. Patent Application No. 12/237,868.
56.
go back to reference Ljubisavljevic, M., & Popovic, M. B. (1999). Data acquisition, processing and storage. In Modern techniques in neuroscience research (pp. 1277–1311). Berlin, Heidelberg: Springer.CrossRef Ljubisavljevic, M., & Popovic, M. B. (1999). Data acquisition, processing and storage. In Modern techniques in neuroscience research (pp. 1277–1311). Berlin, Heidelberg: Springer.CrossRef
57.
go back to reference Schreiner, S. (2014). Medical instruments and devices. In Medical devices and human engineering. Schreiner, S. (2014). Medical instruments and devices. In Medical devices and human engineering.
58.
go back to reference Zikov, T., Bibian, S., & Modarres, M. (2017). U.S. Patent No. 9,554,721. Washington, DC: U.S. Patent and Trademark Office. Zikov, T., Bibian, S., & Modarres, M. (2017). U.S. Patent No. 9,554,721. Washington, DC: U.S. Patent and Trademark Office.
59.
go back to reference Estrada, E. F. (2010). Computer-aided detection of sleep apnea and sleep stage classification using HRV and EEG signals. The University of Texas at El Paso. Estrada, E. F. (2010). Computer-aided detection of sleep apnea and sleep stage classification using HRV and EEG signals. The University of Texas at El Paso.
60.
go back to reference Cavazzana, L. (2012). Integrating an EMG signal classifier and a hand rehabilitation device: Early signal recognition and real time performances. Cavazzana, L. (2012). Integrating an EMG signal classifier and a hand rehabilitation device: Early signal recognition and real time performances.
61.
go back to reference Rodrigues, F. M. S. (2015). Establishing a framework for the development of multimodal virtual reality interfaces with applicability in education and clinical practice (Doctoral dissertation). Rodrigues, F. M. S. (2015). Establishing a framework for the development of multimodal virtual reality interfaces with applicability in education and clinical practice (Doctoral dissertation).
62.
go back to reference Estrada, E. F. (2010). Computer-aided detection of sleep apnea and sleep stage classification using HRV and EEG signals. The University of Texas at El Paso. Estrada, E. F. (2010). Computer-aided detection of sleep apnea and sleep stage classification using HRV and EEG signals. The University of Texas at El Paso.
63.
go back to reference Kaniusas, E. (2015). Sensing by acoustic biosignals. In Biomedical signals and sensors II (pp. 1–90). Berlin, Heidelberg: Springer. Kaniusas, E. (2015). Sensing by acoustic biosignals. In Biomedical signals and sensors II (pp. 1–90). Berlin, Heidelberg: Springer.
64.
go back to reference Bridger, K., Cooke, A. V., Kuhn, P. M., Lutian, J. J., Passaro, E. J., Sewell, J. M., Waskey, T. V., & Rubin, G. R. (2002). U.S. Patent No. 6,491,647. Washington, DC: U.S. Patent and Trademark Office. Bridger, K., Cooke, A. V., Kuhn, P. M., Lutian, J. J., Passaro, E. J., Sewell, J. M., Waskey, T. V., & Rubin, G. R. (2002). U.S. Patent No. 6,491,647. Washington, DC: U.S. Patent and Trademark Office.
65.
go back to reference Sörnmo, L., & Laguna, P. (2005). Bioelectrical signal processing in cardiac and neurological applications (Vol. 8). London: Academic Press. Sörnmo, L., & Laguna, P. (2005). Bioelectrical signal processing in cardiac and neurological applications (Vol. 8). London: Academic Press.
66.
go back to reference Kaniusas, E. (2007). Acoustical signals of biomechanical systems. In C. T. Leondes (Ed.), Biomechanical systems technology: Volume 4: General anatomy (pp. 1–44). Singapore: World Scientific Publishing. Kaniusas, E. (2007). Acoustical signals of biomechanical systems. In C. T. Leondes (Ed.), Biomechanical systems technology: Volume 4: General anatomy (pp. 1–44). Singapore: World Scientific Publishing.
67.
go back to reference Shimizu, K., Kawamura, K., & Yamamoto, K. (2000). Practical considerations for a system to locate moving persons. Biotelemetry, 15, 639–645. Shimizu, K., Kawamura, K., & Yamamoto, K. (2000). Practical considerations for a system to locate moving persons. Biotelemetry, 15, 639–645.
Metadata
Title
Biomedical Signals
Authors
Nilanjan Dey
Amira S. Ashour
Waleed S. Mohamed
Nhu Gia Nguyen
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-92225-6_2