Skip to main content
Top

2016 | OriginalPaper | Chapter

16. Biomolecular Computing

Authors : Ke-Lin Du, M. N. S. Swamy

Published in: Search and Optimization by Metaheuristics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomolecular computing studies the potential of using biological molecules to perform computation. DNA (deoxyribonucleic acid) computing [49] and membrane computing [46] are two natural computing techniques at the biomolecular level. This chapter gives a conceptual introduction to these computing paradigms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adleman LM. Molecular computation of solutions to combinatorial problems. Science. 1994;266(5187):1021–4.CrossRef Adleman LM. Molecular computation of solutions to combinatorial problems. Science. 1994;266(5187):1021–4.CrossRef
2.
go back to reference Albert R, Othmer HG. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol. 2003;223(1):1–18.MathSciNetCrossRef Albert R, Othmer HG. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol. 2003;223(1):1–18.MathSciNetCrossRef
3.
go back to reference Alhazov A, Martin-Vide C, Pan L. Solving a PSPACE complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae. 2003;58(2):67–77.MathSciNetMATH Alhazov A, Martin-Vide C, Pan L. Solving a PSPACE complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae. 2003;58(2):67–77.MathSciNetMATH
4.
go back to reference Baum EB. Building an associative memory vastly larger than the brain. Science. 1995;268:583–5.CrossRef Baum EB. Building an associative memory vastly larger than the brain. Science. 1995;268:583–5.CrossRef
5.
go back to reference Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E. Programmable and autonomous computing machine made of biomolecules. Nature. 2001;414:430–4.CrossRef Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E. Programmable and autonomous computing machine made of biomolecules. Nature. 2001;414:430–4.CrossRef
6.
go back to reference Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous molecular computer for logical control of gene expression. Nature. 2004;429(6990):423–9.CrossRef Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous molecular computer for logical control of gene expression. Nature. 2004;429(6990):423–9.CrossRef
8.
go back to reference Calude CS, Paun G. Bio-steps beyond Turing. BioSystems. 2004;77:175–94. Calude CS, Paun G. Bio-steps beyond Turing. BioSystems. 2004;77:175–94.
9.
go back to reference Cecilia JM, Garcia JM, Guerrero GD, Martinez-del-Amor MA, Perez-Hurtado I, Perez-Jimenez MJ. Simulation of P systems with active membranes on CUDA. Briefings Bioinform. 2010;11(3):313–22.CrossRef Cecilia JM, Garcia JM, Guerrero GD, Martinez-del-Amor MA, Perez-Hurtado I, Perez-Jimenez MJ. Simulation of P systems with active membranes on CUDA. Briefings Bioinform. 2010;11(3):313–22.CrossRef
10.
go back to reference Chen H, Anindya D, Goel A. Towards programmable molecular machines. In: Proceedings of the 5th conference on foundation of nanoscience, Snowbird, Utah, 2008. p. 137–139. Chen H, Anindya D, Goel A. Towards programmable molecular machines. In: Proceedings of the 5th conference on foundation of nanoscience, Snowbird, Utah, 2008. p. 137–139.
11.
12.
go back to reference Chen H, Ionescu M, Ishdorj T. On the efficiency of spiking neural P systems. In: Gutierrez-Naranjo MA, Paun G, Riscos-Nunez A, Romero-Campero FJ, editors. Proceedings of fourth brainstorming week on membrane computing, Sevilla, Spain, February 2006. p. 195–206. Chen H, Ionescu M, Ishdorj T. On the efficiency of spiking neural P systems. In: Gutierrez-Naranjo MA, Paun G, Riscos-Nunez A, Romero-Campero FJ, editors. Proceedings of fourth brainstorming week on membrane computing, Sevilla, Spain, February 2006. p. 195–206.
13.
go back to reference Cheng J, Zhang G, Zeng X. A novel membrane algorithm based on differential evolution for numerical optimization. Int J Unconv Comput. 2011;7:159–83. Cheng J, Zhang G, Zeng X. A novel membrane algorithm based on differential evolution for numerical optimization. Int J Unconv Comput. 2011;7:159–83.
14.
go back to reference Clelland CT, Risca V, Bancroft C. Hiding messages in DNA microdots. Nature. 1999;399(6736):533–4.CrossRef Clelland CT, Risca V, Bancroft C. Hiding messages in DNA microdots. Nature. 1999;399(6736):533–4.CrossRef
15.
go back to reference Cox JP. Long-term data storage in DNA. Trends Biotechnol. 2001;19(7):247–50.CrossRef Cox JP. Long-term data storage in DNA. Trends Biotechnol. 2001;19(7):247–50.CrossRef
16.
go back to reference Diaz-Pernil D, Gutierrez-Naranjo MA, Perez-Jimenez MJ, Riscos-Nuez A. A linear-time tissue P system based solution for the 3-coloring problem. Electron Notes Theor Comput Sci. 2007;171(2):81–93. Diaz-Pernil D, Gutierrez-Naranjo MA, Perez-Jimenez MJ, Riscos-Nuez A. A linear-time tissue P system based solution for the 3-coloring problem. Electron Notes Theor Comput Sci. 2007;171(2):81–93.
17.
go back to reference Dittrich P, Ziegler J, Banzhaf W. Artificial chemistries—a review. Artif Life. 2001;7(3):225–75. Dittrich P, Ziegler J, Banzhaf W. Artificial chemistries—a review. Artif Life. 2001;7(3):225–75.
18.
go back to reference Faulhammer D, Cukras AR, Lipton RJ, Landweber LF. Molecular computation: RNA solutions to chess problems. Proc Nat Acad Sci U.S.A. 2000;97:1385–9.CrossRef Faulhammer D, Cukras AR, Lipton RJ, Landweber LF. Molecular computation: RNA solutions to chess problems. Proc Nat Acad Sci U.S.A. 2000;97:1385–9.CrossRef
19.
go back to reference Fisher MJ, Paton RC, Matsuno K. Intracellular signalling proteins as ‘smart’ agents in parallel distributed processes. BioSystems. 1999;50(3):159–71.CrossRef Fisher MJ, Paton RC, Matsuno K. Intracellular signalling proteins as ‘smart’ agents in parallel distributed processes. BioSystems. 1999;50(3):159–71.CrossRef
20.
go back to reference Frisco P. Computing with cells: advances in membrane computing. Oxford: Oxford University Press; 2009.CrossRefMATH Frisco P. Computing with cells: advances in membrane computing. Oxford: Oxford University Press; 2009.CrossRefMATH
21.
go back to reference Frisco P. P Systems and unique-sum sets. In: Proceedings of international conference on membrane computing, Lecture notes of computer science 6501. Berlin: Springer; 2010. p. 208–225. Frisco P. P Systems and unique-sum sets. In: Proceedings of international conference on membrane computing, Lecture notes of computer science 6501. Berlin: Springer; 2010. p. 208–225.
22.
go back to reference Garcia-Arnau M, Perez D, Rodriguez-Paton A, Sosik P. On the power of elementary features in spiking neural P systems. Nat Comput. 2008;7:471–83.MathSciNetCrossRefMATH Garcia-Arnau M, Perez D, Rodriguez-Paton A, Sosik P. On the power of elementary features in spiking neural P systems. Nat Comput. 2008;7:471–83.MathSciNetCrossRefMATH
23.
go back to reference Gheorghe M, Stannett M. Membrane system models for super-Turing paradigms. Nat Comput. 2012;11:253–9. Gheorghe M, Stannett M. Membrane system models for super-Turing paradigms. Nat Comput. 2012;11:253–9.
24.
go back to reference Grumbach S, Tahi F. A new challenge for compression algorithms: genetic sequences. Inf Process Manag. 1994;30:875–86.CrossRefMATH Grumbach S, Tahi F. A new challenge for compression algorithms: genetic sequences. Inf Process Manag. 1994;30:875–86.CrossRefMATH
25.
go back to reference Grumbach S, Tahi F. Compression of DNA sequences. In: Proceedings of data compression conference, Snowbird, UT, March 1993. p. 340–350. Grumbach S, Tahi F. Compression of DNA sequences. In: Proceedings of data compression conference, Snowbird, UT, March 1993. p. 340–350.
26.
go back to reference Hasty J, McMillen D, Collins JJ. Engineered gene circuits. Nature. 2002;420:224–30.CrossRef Hasty J, McMillen D, Collins JJ. Engineered gene circuits. Nature. 2002;420:224–30.CrossRef
27.
go back to reference Heider D, Barnekow A. DNA-based watermarks using the DNA-crypt algorithm. BMC Bioinform. 2007;8:176.CrossRef Heider D, Barnekow A. DNA-based watermarks using the DNA-crypt algorithm. BMC Bioinform. 2007;8:176.CrossRef
28.
29.
go back to reference Ionescu M, Paun G, Yokomori T. Spiking neural P systems. Fundamenta Informaticae. 2006;71:279–308. Ionescu M, Paun G, Yokomori T. Spiking neural P systems. Fundamenta Informaticae. 2006;71:279–308.
30.
go back to reference Ionescu M, Paun G, Yokomori T. Spiking neural P systems with an exhaustive use of rules. Int J Unconv Comput. 2007;3(2):135–53. Ionescu M, Paun G, Yokomori T. Spiking neural P systems with an exhaustive use of rules. Int J Unconv Comput. 2007;3(2):135–53.
31.
go back to reference Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ. Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol. 2004;22:841–7.CrossRef Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ. Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol. 2004;22:841–7.CrossRef
32.
go back to reference Ishdorj T, Leporati A, Pan L, Zeng X, Zhang X. Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theor Comput Sci. 2010;411:2345–58.MathSciNetCrossRefMATH Ishdorj T, Leporati A, Pan L, Zeng X, Zhang X. Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theor Comput Sci. 2010;411:2345–58.MathSciNetCrossRefMATH
33.
go back to reference Kan A, Sakai Y, Shohda K, Suyama A. A DNA based molecular logic gate capable of a variety of logical operations. Nat Comput. 2014;13:573–81.MathSciNetCrossRefMATH Kan A, Sakai Y, Shohda K, Suyama A. A DNA based molecular logic gate capable of a variety of logical operations. Nat Comput. 2014;13:573–81.MathSciNetCrossRefMATH
34.
go back to reference Karakose M, Cigdem U. QPSO-based adaptive DNA computing algorithm. Sci World J. 2013;2013:8. Article ID 160687. Karakose M, Cigdem U. QPSO-based adaptive DNA computing algorithm. Sci World J. 2013;2013:8. Article ID 160687.
35.
go back to reference Lauffenburger DA. Cell signaling pathways as control modules: complexity for simplicity? PNAS. 2000;97(10):5031–3.CrossRef Lauffenburger DA. Cell signaling pathways as control modules: complexity for simplicity? PNAS. 2000;97(10):5031–3.CrossRef
36.
go back to reference Leporati A, Besozzi D, Cazzaniga P, Pescini D, Ferretti C. Computing with energy and chemical reactions. Nat Comput. 2010;9:493–512.MathSciNetCrossRefMATH Leporati A, Besozzi D, Cazzaniga P, Pescini D, Ferretti C. Computing with energy and chemical reactions. Nat Comput. 2010;9:493–512.MathSciNetCrossRefMATH
37.
go back to reference Lin L, Guo F, Xie X. Novel informative feature samples extraction model using cell nuclear pore optimization. Eng Appl Artif Intell. 2015;39:168–80.CrossRef Lin L, Guo F, Xie X. Novel informative feature samples extraction model using cell nuclear pore optimization. Eng Appl Artif Intell. 2015;39:168–80.CrossRef
38.
go back to reference Maass W. Computing with spikes. Found Inf Process TELEMATIK. 2002;8:32–6. Maass W. Computing with spikes. Found Inf Process TELEMATIK. 2002;8:32–6.
39.
go back to reference Manca V, Bianco L, Fontana F. Evolution and oscillation in P systems: applications to biological phenomena. In: Mauri G, Paun G, Perez-Jimenez MJ, Rozenberg G, Salomaa A, editors. Workshop on membrane computing, Lecture notes in computer science 3365. Berlin: Springer; 2004. p. 63–84. Manca V, Bianco L, Fontana F. Evolution and oscillation in P systems: applications to biological phenomena. In: Mauri G, Paun G, Perez-Jimenez MJ, Rozenberg G, Salomaa A, editors. Workshop on membrane computing, Lecture notes in computer science 3365. Berlin: Springer; 2004. p. 63–84.
40.
go back to reference Marijuan PC. Enzymes, artificial cells and the nature of biological information. BioSystems. 1995;35:167–70.CrossRef Marijuan PC. Enzymes, artificial cells and the nature of biological information. BioSystems. 1995;35:167–70.CrossRef
41.
go back to reference Martin-Vide C, Paun G, Pazos J, Rodriguez-Paton A. Tissue P systems. Theor Comput Sci. 2003;296(2):295–326. Martin-Vide C, Paun G, Pazos J, Rodriguez-Paton A. Tissue P systems. Theor Comput Sci. 2003;296(2):295–326.
43.
go back to reference Nguyen V, Kearney D, Gioiosa G. An implementation of membrane computing using reconfigurable hardware. Comput Inform. 2008;27:551–69.MathSciNet Nguyen V, Kearney D, Gioiosa G. An implementation of membrane computing using reconfigurable hardware. Comput Inform. 2008;27:551–69.MathSciNet
48.
go back to reference Paun G, Rozenberg G, Salomaa A, editors. Handbook of membrane computing. Oxford, UK: Oxford University Press; 2010.MATH Paun G, Rozenberg G, Salomaa A, editors. Handbook of membrane computing. Oxford, UK: Oxford University Press; 2010.MATH
50.
go back to reference Peng H, Luo X, Gao Z, Wang J, Pei Z. A novel clustering algorithm inspired by membrane computing. Sci World J. 2015;2015:8. Article ID 929471. Peng H, Luo X, Gao Z, Wang J, Pei Z. A novel clustering algorithm inspired by membrane computing. Sci World J. 2015;2015:8. Article ID 929471.
51.
go back to reference Perez-Jimenez MJ, Romero-Jimenez A, Sancho-Caparrini F. Complexity classes in models of cellular computing with membranes. Nat Comput. 2003;2(3):265–85.MathSciNetCrossRefMATH Perez-Jimenez MJ, Romero-Jimenez A, Sancho-Caparrini F. Complexity classes in models of cellular computing with membranes. Nat Comput. 2003;2(3):265–85.MathSciNetCrossRefMATH
52.
53.
go back to reference Qian L, Winfree E. A simple DNA gate motif for synthesizing large-scale circuits. In: DNA computing, Volume 5347 of Lecture notes in computer science. Berlin: Springer; 2008. p. 70–89. Qian L, Winfree E. A simple DNA gate motif for synthesizing large-scale circuits. In: DNA computing, Volume 5347 of Lecture notes in computer science. Berlin: Springer; 2008. p. 70–89.
54.
go back to reference Rothemund P. A DNA and restriction enzyme implementation of turing machines. In: DNA based computers, DIMACS series in discrete mathematics and theoretical computer science, no. 27. Providence, RI: American Mathematical Society; 1996. p. 75–120. Rothemund P. A DNA and restriction enzyme implementation of turing machines. In: DNA based computers, DIMACS series in discrete mathematics and theoretical computer science, no. 27. Providence, RI: American Mathematical Society; 1996. p. 75–120.
55.
go back to reference Seelig G, Soloveichik D, Zhang DY, Winfree E. Enzyme-free nucleic acid logic circuits. Science. 2006;314(5805):1585.CrossRef Seelig G, Soloveichik D, Zhang DY, Winfree E. Enzyme-free nucleic acid logic circuits. Science. 2006;314(5805):1585.CrossRef
56.
57.
go back to reference Stojanovic MN, Mitchell TE, Stefanovic D. Deoxyribozyme-based logic gates. J Am Chem Soc. 2002;124(14):3555–61.CrossRef Stojanovic MN, Mitchell TE, Stefanovic D. Deoxyribozyme-based logic gates. J Am Chem Soc. 2002;124(14):3555–61.CrossRef
59.
go back to reference Weiss R, Basu S, Hooshansi S, Kalmbach A, Karig D, Mehreja R, Netravalt I. Genetic circuit building blocks for cellular computation, communications, and signal processing. Nat Comput. 2003;2:47–84.CrossRef Weiss R, Basu S, Hooshansi S, Kalmbach A, Karig D, Mehreja R, Netravalt I. Genetic circuit building blocks for cellular computation, communications, and signal processing. Nat Comput. 2003;2:47–84.CrossRef
60.
go back to reference Weiss R, Knight Jr TF, Sussman G. Genetic process engineering. In: Amos M, editor. Cellular computation. Oxford, UK: Oxford University Press; 2004. p. 43–73. Weiss R, Knight Jr TF, Sussman G. Genetic process engineering. In: Amos M, editor. Cellular computation. Oxford, UK: Oxford University Press; 2004. p. 43–73.
61.
go back to reference Win MN, Smolke CD. Higher-order cellular information processing with synthetic RNA devices. Science. 2008;322(5900):456–60.CrossRef Win MN, Smolke CD. Higher-order cellular information processing with synthetic RNA devices. Science. 2008;322(5900):456–60.CrossRef
62.
go back to reference Wong PC, Wong K, Foote H. Organic data memory using the DNA approach. Commun ACM. 2003;46(1):95–8.CrossRef Wong PC, Wong K, Foote H. Organic data memory using the DNA approach. Commun ACM. 2003;46(1):95–8.CrossRef
63.
go back to reference Xu J, Qiang X, Yang Y, Wang B, Yang D, Luo L, Pan L, Wang S. An unenumerative DNA computing model for vertex coloring problem. IEEE Trans Nanobiosci. 2011;10(2):94–8.CrossRef Xu J, Qiang X, Yang Y, Wang B, Yang D, Luo L, Pan L, Wang S. An unenumerative DNA computing model for vertex coloring problem. IEEE Trans Nanobiosci. 2011;10(2):94–8.CrossRef
64.
65.
go back to reference Yurke B, Turberfield A, Mills A Jr, Simmel F, Neumann J. A DNA-fuelled molecular machine made of DNA. Nature. 2000;406:605–8.CrossRef Yurke B, Turberfield A, Mills A Jr, Simmel F, Neumann J. A DNA-fuelled molecular machine made of DNA. Nature. 2000;406:605–8.CrossRef
66.
go back to reference Zandron C, Ferretti C, Mauri G. Solving NP-complete problems using P systems with active membranes. In: Antoniou CS, Calude MJ, Dinneen I, editors. Unconventional models of computation. London: Springer; 2000. p. 289–301. Zandron C, Ferretti C, Mauri G. Solving NP-complete problems using P systems with active membranes. In: Antoniou CS, Calude MJ, Dinneen I, editors. Unconventional models of computation. London: Springer; 2000. p. 289–301.
67.
go back to reference Zhang GX, Gheorghe M, Wu CZ. A quantum-inspired evolutionary algorithm based on P systems for knapsack problem. Fundamenta Informaticae. 2008;87:93–116.MathSciNetMATH Zhang GX, Gheorghe M, Wu CZ. A quantum-inspired evolutionary algorithm based on P systems for knapsack problem. Fundamenta Informaticae. 2008;87:93–116.MathSciNetMATH
Metadata
Title
Biomolecular Computing
Authors
Ke-Lin Du
M. N. S. Swamy
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-41192-7_16

Premium Partner