Skip to main content

2016 | OriginalPaper | Buchkapitel

16. Biomolecular Computing

verfasst von : Ke-Lin Du, M. N. S. Swamy

Erschienen in: Search and Optimization by Metaheuristics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomolecular computing studies the potential of using biological molecules to perform computation. DNA (deoxyribonucleic acid) computing [49] and membrane computing [46] are two natural computing techniques at the biomolecular level. This chapter gives a conceptual introduction to these computing paradigms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adleman LM. Molecular computation of solutions to combinatorial problems. Science. 1994;266(5187):1021–4.CrossRef Adleman LM. Molecular computation of solutions to combinatorial problems. Science. 1994;266(5187):1021–4.CrossRef
2.
Zurück zum Zitat Albert R, Othmer HG. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol. 2003;223(1):1–18.MathSciNetCrossRef Albert R, Othmer HG. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol. 2003;223(1):1–18.MathSciNetCrossRef
3.
Zurück zum Zitat Alhazov A, Martin-Vide C, Pan L. Solving a PSPACE complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae. 2003;58(2):67–77.MathSciNetMATH Alhazov A, Martin-Vide C, Pan L. Solving a PSPACE complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae. 2003;58(2):67–77.MathSciNetMATH
4.
Zurück zum Zitat Baum EB. Building an associative memory vastly larger than the brain. Science. 1995;268:583–5.CrossRef Baum EB. Building an associative memory vastly larger than the brain. Science. 1995;268:583–5.CrossRef
5.
Zurück zum Zitat Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E. Programmable and autonomous computing machine made of biomolecules. Nature. 2001;414:430–4.CrossRef Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E. Programmable and autonomous computing machine made of biomolecules. Nature. 2001;414:430–4.CrossRef
6.
Zurück zum Zitat Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous molecular computer for logical control of gene expression. Nature. 2004;429(6990):423–9.CrossRef Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous molecular computer for logical control of gene expression. Nature. 2004;429(6990):423–9.CrossRef
8.
Zurück zum Zitat Calude CS, Paun G. Bio-steps beyond Turing. BioSystems. 2004;77:175–94. Calude CS, Paun G. Bio-steps beyond Turing. BioSystems. 2004;77:175–94.
9.
Zurück zum Zitat Cecilia JM, Garcia JM, Guerrero GD, Martinez-del-Amor MA, Perez-Hurtado I, Perez-Jimenez MJ. Simulation of P systems with active membranes on CUDA. Briefings Bioinform. 2010;11(3):313–22.CrossRef Cecilia JM, Garcia JM, Guerrero GD, Martinez-del-Amor MA, Perez-Hurtado I, Perez-Jimenez MJ. Simulation of P systems with active membranes on CUDA. Briefings Bioinform. 2010;11(3):313–22.CrossRef
10.
Zurück zum Zitat Chen H, Anindya D, Goel A. Towards programmable molecular machines. In: Proceedings of the 5th conference on foundation of nanoscience, Snowbird, Utah, 2008. p. 137–139. Chen H, Anindya D, Goel A. Towards programmable molecular machines. In: Proceedings of the 5th conference on foundation of nanoscience, Snowbird, Utah, 2008. p. 137–139.
11.
12.
Zurück zum Zitat Chen H, Ionescu M, Ishdorj T. On the efficiency of spiking neural P systems. In: Gutierrez-Naranjo MA, Paun G, Riscos-Nunez A, Romero-Campero FJ, editors. Proceedings of fourth brainstorming week on membrane computing, Sevilla, Spain, February 2006. p. 195–206. Chen H, Ionescu M, Ishdorj T. On the efficiency of spiking neural P systems. In: Gutierrez-Naranjo MA, Paun G, Riscos-Nunez A, Romero-Campero FJ, editors. Proceedings of fourth brainstorming week on membrane computing, Sevilla, Spain, February 2006. p. 195–206.
13.
Zurück zum Zitat Cheng J, Zhang G, Zeng X. A novel membrane algorithm based on differential evolution for numerical optimization. Int J Unconv Comput. 2011;7:159–83. Cheng J, Zhang G, Zeng X. A novel membrane algorithm based on differential evolution for numerical optimization. Int J Unconv Comput. 2011;7:159–83.
14.
Zurück zum Zitat Clelland CT, Risca V, Bancroft C. Hiding messages in DNA microdots. Nature. 1999;399(6736):533–4.CrossRef Clelland CT, Risca V, Bancroft C. Hiding messages in DNA microdots. Nature. 1999;399(6736):533–4.CrossRef
15.
Zurück zum Zitat Cox JP. Long-term data storage in DNA. Trends Biotechnol. 2001;19(7):247–50.CrossRef Cox JP. Long-term data storage in DNA. Trends Biotechnol. 2001;19(7):247–50.CrossRef
16.
Zurück zum Zitat Diaz-Pernil D, Gutierrez-Naranjo MA, Perez-Jimenez MJ, Riscos-Nuez A. A linear-time tissue P system based solution for the 3-coloring problem. Electron Notes Theor Comput Sci. 2007;171(2):81–93. Diaz-Pernil D, Gutierrez-Naranjo MA, Perez-Jimenez MJ, Riscos-Nuez A. A linear-time tissue P system based solution for the 3-coloring problem. Electron Notes Theor Comput Sci. 2007;171(2):81–93.
17.
Zurück zum Zitat Dittrich P, Ziegler J, Banzhaf W. Artificial chemistries—a review. Artif Life. 2001;7(3):225–75. Dittrich P, Ziegler J, Banzhaf W. Artificial chemistries—a review. Artif Life. 2001;7(3):225–75.
18.
Zurück zum Zitat Faulhammer D, Cukras AR, Lipton RJ, Landweber LF. Molecular computation: RNA solutions to chess problems. Proc Nat Acad Sci U.S.A. 2000;97:1385–9.CrossRef Faulhammer D, Cukras AR, Lipton RJ, Landweber LF. Molecular computation: RNA solutions to chess problems. Proc Nat Acad Sci U.S.A. 2000;97:1385–9.CrossRef
19.
Zurück zum Zitat Fisher MJ, Paton RC, Matsuno K. Intracellular signalling proteins as ‘smart’ agents in parallel distributed processes. BioSystems. 1999;50(3):159–71.CrossRef Fisher MJ, Paton RC, Matsuno K. Intracellular signalling proteins as ‘smart’ agents in parallel distributed processes. BioSystems. 1999;50(3):159–71.CrossRef
20.
Zurück zum Zitat Frisco P. Computing with cells: advances in membrane computing. Oxford: Oxford University Press; 2009.CrossRefMATH Frisco P. Computing with cells: advances in membrane computing. Oxford: Oxford University Press; 2009.CrossRefMATH
21.
Zurück zum Zitat Frisco P. P Systems and unique-sum sets. In: Proceedings of international conference on membrane computing, Lecture notes of computer science 6501. Berlin: Springer; 2010. p. 208–225. Frisco P. P Systems and unique-sum sets. In: Proceedings of international conference on membrane computing, Lecture notes of computer science 6501. Berlin: Springer; 2010. p. 208–225.
22.
Zurück zum Zitat Garcia-Arnau M, Perez D, Rodriguez-Paton A, Sosik P. On the power of elementary features in spiking neural P systems. Nat Comput. 2008;7:471–83.MathSciNetCrossRefMATH Garcia-Arnau M, Perez D, Rodriguez-Paton A, Sosik P. On the power of elementary features in spiking neural P systems. Nat Comput. 2008;7:471–83.MathSciNetCrossRefMATH
23.
Zurück zum Zitat Gheorghe M, Stannett M. Membrane system models for super-Turing paradigms. Nat Comput. 2012;11:253–9. Gheorghe M, Stannett M. Membrane system models for super-Turing paradigms. Nat Comput. 2012;11:253–9.
24.
Zurück zum Zitat Grumbach S, Tahi F. A new challenge for compression algorithms: genetic sequences. Inf Process Manag. 1994;30:875–86.CrossRefMATH Grumbach S, Tahi F. A new challenge for compression algorithms: genetic sequences. Inf Process Manag. 1994;30:875–86.CrossRefMATH
25.
Zurück zum Zitat Grumbach S, Tahi F. Compression of DNA sequences. In: Proceedings of data compression conference, Snowbird, UT, March 1993. p. 340–350. Grumbach S, Tahi F. Compression of DNA sequences. In: Proceedings of data compression conference, Snowbird, UT, March 1993. p. 340–350.
26.
Zurück zum Zitat Hasty J, McMillen D, Collins JJ. Engineered gene circuits. Nature. 2002;420:224–30.CrossRef Hasty J, McMillen D, Collins JJ. Engineered gene circuits. Nature. 2002;420:224–30.CrossRef
27.
Zurück zum Zitat Heider D, Barnekow A. DNA-based watermarks using the DNA-crypt algorithm. BMC Bioinform. 2007;8:176.CrossRef Heider D, Barnekow A. DNA-based watermarks using the DNA-crypt algorithm. BMC Bioinform. 2007;8:176.CrossRef
28.
29.
Zurück zum Zitat Ionescu M, Paun G, Yokomori T. Spiking neural P systems. Fundamenta Informaticae. 2006;71:279–308. Ionescu M, Paun G, Yokomori T. Spiking neural P systems. Fundamenta Informaticae. 2006;71:279–308.
30.
Zurück zum Zitat Ionescu M, Paun G, Yokomori T. Spiking neural P systems with an exhaustive use of rules. Int J Unconv Comput. 2007;3(2):135–53. Ionescu M, Paun G, Yokomori T. Spiking neural P systems with an exhaustive use of rules. Int J Unconv Comput. 2007;3(2):135–53.
31.
Zurück zum Zitat Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ. Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol. 2004;22:841–7.CrossRef Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ. Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol. 2004;22:841–7.CrossRef
32.
Zurück zum Zitat Ishdorj T, Leporati A, Pan L, Zeng X, Zhang X. Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theor Comput Sci. 2010;411:2345–58.MathSciNetCrossRefMATH Ishdorj T, Leporati A, Pan L, Zeng X, Zhang X. Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theor Comput Sci. 2010;411:2345–58.MathSciNetCrossRefMATH
33.
Zurück zum Zitat Kan A, Sakai Y, Shohda K, Suyama A. A DNA based molecular logic gate capable of a variety of logical operations. Nat Comput. 2014;13:573–81.MathSciNetCrossRefMATH Kan A, Sakai Y, Shohda K, Suyama A. A DNA based molecular logic gate capable of a variety of logical operations. Nat Comput. 2014;13:573–81.MathSciNetCrossRefMATH
34.
Zurück zum Zitat Karakose M, Cigdem U. QPSO-based adaptive DNA computing algorithm. Sci World J. 2013;2013:8. Article ID 160687. Karakose M, Cigdem U. QPSO-based adaptive DNA computing algorithm. Sci World J. 2013;2013:8. Article ID 160687.
35.
Zurück zum Zitat Lauffenburger DA. Cell signaling pathways as control modules: complexity for simplicity? PNAS. 2000;97(10):5031–3.CrossRef Lauffenburger DA. Cell signaling pathways as control modules: complexity for simplicity? PNAS. 2000;97(10):5031–3.CrossRef
36.
Zurück zum Zitat Leporati A, Besozzi D, Cazzaniga P, Pescini D, Ferretti C. Computing with energy and chemical reactions. Nat Comput. 2010;9:493–512.MathSciNetCrossRefMATH Leporati A, Besozzi D, Cazzaniga P, Pescini D, Ferretti C. Computing with energy and chemical reactions. Nat Comput. 2010;9:493–512.MathSciNetCrossRefMATH
37.
Zurück zum Zitat Lin L, Guo F, Xie X. Novel informative feature samples extraction model using cell nuclear pore optimization. Eng Appl Artif Intell. 2015;39:168–80.CrossRef Lin L, Guo F, Xie X. Novel informative feature samples extraction model using cell nuclear pore optimization. Eng Appl Artif Intell. 2015;39:168–80.CrossRef
38.
Zurück zum Zitat Maass W. Computing with spikes. Found Inf Process TELEMATIK. 2002;8:32–6. Maass W. Computing with spikes. Found Inf Process TELEMATIK. 2002;8:32–6.
39.
Zurück zum Zitat Manca V, Bianco L, Fontana F. Evolution and oscillation in P systems: applications to biological phenomena. In: Mauri G, Paun G, Perez-Jimenez MJ, Rozenberg G, Salomaa A, editors. Workshop on membrane computing, Lecture notes in computer science 3365. Berlin: Springer; 2004. p. 63–84. Manca V, Bianco L, Fontana F. Evolution and oscillation in P systems: applications to biological phenomena. In: Mauri G, Paun G, Perez-Jimenez MJ, Rozenberg G, Salomaa A, editors. Workshop on membrane computing, Lecture notes in computer science 3365. Berlin: Springer; 2004. p. 63–84.
40.
Zurück zum Zitat Marijuan PC. Enzymes, artificial cells and the nature of biological information. BioSystems. 1995;35:167–70.CrossRef Marijuan PC. Enzymes, artificial cells and the nature of biological information. BioSystems. 1995;35:167–70.CrossRef
41.
Zurück zum Zitat Martin-Vide C, Paun G, Pazos J, Rodriguez-Paton A. Tissue P systems. Theor Comput Sci. 2003;296(2):295–326. Martin-Vide C, Paun G, Pazos J, Rodriguez-Paton A. Tissue P systems. Theor Comput Sci. 2003;296(2):295–326.
43.
Zurück zum Zitat Nguyen V, Kearney D, Gioiosa G. An implementation of membrane computing using reconfigurable hardware. Comput Inform. 2008;27:551–69.MathSciNet Nguyen V, Kearney D, Gioiosa G. An implementation of membrane computing using reconfigurable hardware. Comput Inform. 2008;27:551–69.MathSciNet
48.
Zurück zum Zitat Paun G, Rozenberg G, Salomaa A, editors. Handbook of membrane computing. Oxford, UK: Oxford University Press; 2010.MATH Paun G, Rozenberg G, Salomaa A, editors. Handbook of membrane computing. Oxford, UK: Oxford University Press; 2010.MATH
50.
Zurück zum Zitat Peng H, Luo X, Gao Z, Wang J, Pei Z. A novel clustering algorithm inspired by membrane computing. Sci World J. 2015;2015:8. Article ID 929471. Peng H, Luo X, Gao Z, Wang J, Pei Z. A novel clustering algorithm inspired by membrane computing. Sci World J. 2015;2015:8. Article ID 929471.
51.
Zurück zum Zitat Perez-Jimenez MJ, Romero-Jimenez A, Sancho-Caparrini F. Complexity classes in models of cellular computing with membranes. Nat Comput. 2003;2(3):265–85.MathSciNetCrossRefMATH Perez-Jimenez MJ, Romero-Jimenez A, Sancho-Caparrini F. Complexity classes in models of cellular computing with membranes. Nat Comput. 2003;2(3):265–85.MathSciNetCrossRefMATH
52.
Zurück zum Zitat Porreca AE, Leporati A, Mauri G, Zandron C. P systems with active membranes: trading time for space. Nat Comput. 2011;10:167–82.MathSciNetCrossRefMATH Porreca AE, Leporati A, Mauri G, Zandron C. P systems with active membranes: trading time for space. Nat Comput. 2011;10:167–82.MathSciNetCrossRefMATH
53.
Zurück zum Zitat Qian L, Winfree E. A simple DNA gate motif for synthesizing large-scale circuits. In: DNA computing, Volume 5347 of Lecture notes in computer science. Berlin: Springer; 2008. p. 70–89. Qian L, Winfree E. A simple DNA gate motif for synthesizing large-scale circuits. In: DNA computing, Volume 5347 of Lecture notes in computer science. Berlin: Springer; 2008. p. 70–89.
54.
Zurück zum Zitat Rothemund P. A DNA and restriction enzyme implementation of turing machines. In: DNA based computers, DIMACS series in discrete mathematics and theoretical computer science, no. 27. Providence, RI: American Mathematical Society; 1996. p. 75–120. Rothemund P. A DNA and restriction enzyme implementation of turing machines. In: DNA based computers, DIMACS series in discrete mathematics and theoretical computer science, no. 27. Providence, RI: American Mathematical Society; 1996. p. 75–120.
55.
Zurück zum Zitat Seelig G, Soloveichik D, Zhang DY, Winfree E. Enzyme-free nucleic acid logic circuits. Science. 2006;314(5805):1585.CrossRef Seelig G, Soloveichik D, Zhang DY, Winfree E. Enzyme-free nucleic acid logic circuits. Science. 2006;314(5805):1585.CrossRef
56.
Zurück zum Zitat Sosik P, Cienciala L. Computational power of cell separation in tissue P systems. Inf Sci. 2014;279:805–15.MathSciNetCrossRef Sosik P, Cienciala L. Computational power of cell separation in tissue P systems. Inf Sci. 2014;279:805–15.MathSciNetCrossRef
57.
Zurück zum Zitat Stojanovic MN, Mitchell TE, Stefanovic D. Deoxyribozyme-based logic gates. J Am Chem Soc. 2002;124(14):3555–61.CrossRef Stojanovic MN, Mitchell TE, Stefanovic D. Deoxyribozyme-based logic gates. J Am Chem Soc. 2002;124(14):3555–61.CrossRef
58.
59.
Zurück zum Zitat Weiss R, Basu S, Hooshansi S, Kalmbach A, Karig D, Mehreja R, Netravalt I. Genetic circuit building blocks for cellular computation, communications, and signal processing. Nat Comput. 2003;2:47–84.CrossRef Weiss R, Basu S, Hooshansi S, Kalmbach A, Karig D, Mehreja R, Netravalt I. Genetic circuit building blocks for cellular computation, communications, and signal processing. Nat Comput. 2003;2:47–84.CrossRef
60.
Zurück zum Zitat Weiss R, Knight Jr TF, Sussman G. Genetic process engineering. In: Amos M, editor. Cellular computation. Oxford, UK: Oxford University Press; 2004. p. 43–73. Weiss R, Knight Jr TF, Sussman G. Genetic process engineering. In: Amos M, editor. Cellular computation. Oxford, UK: Oxford University Press; 2004. p. 43–73.
61.
Zurück zum Zitat Win MN, Smolke CD. Higher-order cellular information processing with synthetic RNA devices. Science. 2008;322(5900):456–60.CrossRef Win MN, Smolke CD. Higher-order cellular information processing with synthetic RNA devices. Science. 2008;322(5900):456–60.CrossRef
62.
Zurück zum Zitat Wong PC, Wong K, Foote H. Organic data memory using the DNA approach. Commun ACM. 2003;46(1):95–8.CrossRef Wong PC, Wong K, Foote H. Organic data memory using the DNA approach. Commun ACM. 2003;46(1):95–8.CrossRef
63.
Zurück zum Zitat Xu J, Qiang X, Yang Y, Wang B, Yang D, Luo L, Pan L, Wang S. An unenumerative DNA computing model for vertex coloring problem. IEEE Trans Nanobiosci. 2011;10(2):94–8.CrossRef Xu J, Qiang X, Yang Y, Wang B, Yang D, Luo L, Pan L, Wang S. An unenumerative DNA computing model for vertex coloring problem. IEEE Trans Nanobiosci. 2011;10(2):94–8.CrossRef
64.
Zurück zum Zitat Yamamoto M, Kashiwamura S, Ohuchi A, Furukawa M. Large-scale DNA memory based on the nested PCR. Nat Comput. 2008;7:335–46.MathSciNetCrossRefMATH Yamamoto M, Kashiwamura S, Ohuchi A, Furukawa M. Large-scale DNA memory based on the nested PCR. Nat Comput. 2008;7:335–46.MathSciNetCrossRefMATH
65.
Zurück zum Zitat Yurke B, Turberfield A, Mills A Jr, Simmel F, Neumann J. A DNA-fuelled molecular machine made of DNA. Nature. 2000;406:605–8.CrossRef Yurke B, Turberfield A, Mills A Jr, Simmel F, Neumann J. A DNA-fuelled molecular machine made of DNA. Nature. 2000;406:605–8.CrossRef
66.
Zurück zum Zitat Zandron C, Ferretti C, Mauri G. Solving NP-complete problems using P systems with active membranes. In: Antoniou CS, Calude MJ, Dinneen I, editors. Unconventional models of computation. London: Springer; 2000. p. 289–301. Zandron C, Ferretti C, Mauri G. Solving NP-complete problems using P systems with active membranes. In: Antoniou CS, Calude MJ, Dinneen I, editors. Unconventional models of computation. London: Springer; 2000. p. 289–301.
67.
Zurück zum Zitat Zhang GX, Gheorghe M, Wu CZ. A quantum-inspired evolutionary algorithm based on P systems for knapsack problem. Fundamenta Informaticae. 2008;87:93–116.MathSciNetMATH Zhang GX, Gheorghe M, Wu CZ. A quantum-inspired evolutionary algorithm based on P systems for knapsack problem. Fundamenta Informaticae. 2008;87:93–116.MathSciNetMATH
Metadaten
Titel
Biomolecular Computing
verfasst von
Ke-Lin Du
M. N. S. Swamy
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-41192-7_16

Premium Partner