Skip to main content
Top

2018 | OriginalPaper | Chapter

11. Biorefineries: Focusing on a Closed Cycle Approach with Biogas as the Final Step

Authors : Benyamin Khoshnevisan, Irini Angelidaki

Published in: Biogas

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increasing energy demands as a consequence of fast-growing global population and higher living standards over the last few decades have triggered huge interest in finding new energy resources. In this context, biomass is an environmentally friendly renewable resource with huge potentials to generate power as well as various useful chemicals and fuels. Biorefineries which are analogous to today’s petroleum refineries are identified as a processing facility that can use biomass as feedstock to produce these value-added products. Although being promising, biorefineries face some serious limitations and constraints as well. For instance, for upscaling biorefineries, a considerable infrastructure would be required to make possible the collection and storage of a large amount of biomass. The economic and sustainable processing of raw materials in biorefineries requires advanced and sophisticated technologies most of which are still at a pre-commercial stage. Food security, high energy demand, production cost, seasonal diversity, land use change effect, etc. are also among the other important topics in question. The objectives of this chapter are to review the concept of biorefinery, introduce different types of biorefineries and their classifications, overview associated barriers and obstacles to biorefineries, and evaluate various potential feedstocks for biorefining process. Finally, the potential of integrating anaerobic digestion to biorefinery platforms is discussed and the advantages and drawbacks are reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Batista AP, López EP, Dias C, da Silva TL, Marques IP (2017) Wastes valorization from Rhodosporidium toruloides NCYC 921 production and biorefinery by anaerobic digestion. Biores Technol 226:108–117CrossRef Batista AP, López EP, Dias C, da Silva TL, Marques IP (2017) Wastes valorization from Rhodosporidium toruloides NCYC 921 production and biorefinery by anaerobic digestion. Biores Technol 226:108–117CrossRef
go back to reference Begum S, Golluri K, Anupoju GR, Ahuja S, Gandu B, Kuruti K, Maddala RK, Venkata SY (2016) Cooked and uncooked food waste: a viable feedstock for generation of value added products through biorefinery approach. Chem Eng Res Des 107:43–51CrossRef Begum S, Golluri K, Anupoju GR, Ahuja S, Gandu B, Kuruti K, Maddala RK, Venkata SY (2016) Cooked and uncooked food waste: a viable feedstock for generation of value added products through biorefinery approach. Chem Eng Res Des 107:43–51CrossRef
go back to reference Berntsson T, Sandén BA, Olsson L, Åsblad A (2012) What is a biorefinery? Berntsson T, Sandén BA, Olsson L, Åsblad A (2012) What is a biorefinery?
go back to reference Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRef Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRef
go back to reference Brar SK, Sarma SJ, Pakshirajan K (2016) Platform chemical biorefinery: future green chemistry. Elsevier Brar SK, Sarma SJ, Pakshirajan K (2016) Platform chemical biorefinery: future green chemistry. Elsevier
go back to reference Cail R, Barford J (1985) A comparison of an upflow floc (tower) digester and UASB system treating cane juice stilage. Agric Wastes 14:291–299CrossRef Cail R, Barford J (1985) A comparison of an upflow floc (tower) digester and UASB system treating cane juice stilage. Agric Wastes 14:291–299CrossRef
go back to reference Callander I, Barford J (1983) Anaerobic digestion of high sulphate cane juice stillage in a tower fermenter. Biotech Lett 5:755–760CrossRef Callander I, Barford J (1983) Anaerobic digestion of high sulphate cane juice stillage in a tower fermenter. Biotech Lett 5:755–760CrossRef
go back to reference Cassidy D, Hirl P, Belia E (2008) Methane production from ethanol co-products in anaerobic SBRs. Water Sci Technol 58:789–793CrossRef Cassidy D, Hirl P, Belia E (2008) Methane production from ethanol co-products in anaerobic SBRs. Water Sci Technol 58:789–793CrossRef
go back to reference Chambost V, Stuart PR (2007) Selecting the most appropriate products for the forest biorefinery. Industrial Biotechnol 3:112–119CrossRef Chambost V, Stuart PR (2007) Selecting the most appropriate products for the forest biorefinery. Industrial Biotechnol 3:112–119CrossRef
go back to reference Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renew Sustain Energy Rev 16:1462–1476CrossRef Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renew Sustain Energy Rev 16:1462–1476CrossRef
go back to reference Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421CrossRef Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421CrossRef
go back to reference Cherubini F, Jungmeier G, Mandl M, Philips C, Wellisch M, Jrgensen H, Skiadas I, Boniface L, Dohy M, Pouet J-C, (2007) IEA Bioenergy Task 42 on Biorefineries: co-production of fuels, chemicals, power and materials from biomass. IEA Cherubini F, Jungmeier G, Mandl M, Philips C, Wellisch M, Jrgensen H, Skiadas I, Boniface L, Dohy M, Pouet J-C, (2007) IEA Bioenergy Task 42 on Biorefineries: co-production of fuels, chemicals, power and materials from biomass. IEA
go back to reference Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, Van Ree R, de Jong E (2009) Toward a common classification approach for biorefinery systems. Biofuels, Bioprod Biorefin 3:534–546CrossRef Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, Van Ree R, de Jong E (2009) Toward a common classification approach for biorefinery systems. Biofuels, Bioprod Biorefin 3:534–546CrossRef
go back to reference Collet P, Hélias A, Lardon L, Ras M, Goy R-A, Steyer J-P (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Biores Technol 102:207–214CrossRef Collet P, Hélias A, Lardon L, Ras M, Goy R-A, Steyer J-P (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Biores Technol 102:207–214CrossRef
go back to reference Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone–butanol–ethanol fermentation pathway. Metab Eng 14:630–641CrossRef Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone–butanol–ethanol fermentation pathway. Metab Eng 14:630–641CrossRef
go back to reference Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryotic Cell 5:1175–1183CrossRef Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryotic Cell 5:1175–1183CrossRef
go back to reference Dale BE, Kim S (2006) Biomass refining global impact–the biobased economy of the 21st century. In: Biorefineries-industrial processes and products: status quo and future directions, 41–66 Dale BE, Kim S (2006) Biomass refining global impact–the biobased economy of the 21st century. In: Biorefineries-industrial processes and products: status quo and future directions, 41–66
go back to reference Dan W, Hao C, Jiang L, Jin C, Zhinan X, Peilin C (2010) Efficient separation of butyric acid by an aqueous two-phase system with calcium chloride. Chin J Chem Eng 18:533–537 Dan W, Hao C, Jiang L, Jin C, Zhinan X, Peilin C (2010) Efficient separation of butyric acid by an aqueous two-phase system with calcium chloride. Chin J Chem Eng 18:533–537
go back to reference Danner H, Braun R (1999) Biotechnology for the production of commodity chemicals from biomass. Chem Soc Rev 28:395–405CrossRef Danner H, Braun R (1999) Biotechnology for the production of commodity chemicals from biomass. Chem Soc Rev 28:395–405CrossRef
go back to reference DeFries R, Achard F, Brown S, Herold M, Murdiyarso D, Schlamadinger B, de Souza C (2007) Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environ Sci Policy 10:385–394CrossRef DeFries R, Achard F, Brown S, Herold M, Murdiyarso D, Schlamadinger B, de Souza C (2007) Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environ Sci Policy 10:385–394CrossRef
go back to reference Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:S108–S117CrossRef Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:S108–S117CrossRef
go back to reference Demirbas A, Demirbas MF (2010) Biorefineries, Algae Energy. Springer, pp 159–181CrossRef Demirbas A, Demirbas MF (2010) Biorefineries, Algae Energy. Springer, pp 159–181CrossRef
go back to reference Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. Wiley Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. Wiley
go back to reference Dien B, Cotta M, Jeffries T (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266CrossRef Dien B, Cotta M, Jeffries T (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266CrossRef
go back to reference Drosg B, Wirthensohn T, Konrad G, Hornbachner D, Resch C, Wäger F, Loderer C, Waltenberger R, Kirchmayr R, Braun R (2008) Comparing centralised and decentralised anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production. Water Sci Technol 58:1483–1489CrossRef Drosg B, Wirthensohn T, Konrad G, Hornbachner D, Resch C, Wäger F, Loderer C, Waltenberger R, Kirchmayr R, Braun R (2008) Comparing centralised and decentralised anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production. Water Sci Technol 58:1483–1489CrossRef
go back to reference Energy, U.S.D.O (1997) Energy, environmental, and economics (E3) handbook—a resource tool to aid the office of industrial technologies Energy, U.S.D.O (1997) Energy, environmental, and economics (E3) handbook—a resource tool to aid the office of industrial technologies
go back to reference Engel CAR, Straathof AJ, Zijlmans TW, van Gulik WM, van der Wielen LA (2008) Fumaric acid production by fermentation. Appl Microbiol Biotechnol 78:379–389CrossRef Engel CAR, Straathof AJ, Zijlmans TW, van Gulik WM, van der Wielen LA (2008) Fumaric acid production by fermentation. Appl Microbiol Biotechnol 78:379–389CrossRef
go back to reference FazeliNejad S, Ferreira JA, Brandberg T, Lennartsson PR, Taherzadeh MJ (2016) Fungal protein and ethanol from lignocelluloses using Rhizopus pellets under simultaneous saccharification, filtration and fermentation (SSFF). Biofuel Res J 3:372–378CrossRef FazeliNejad S, Ferreira JA, Brandberg T, Lennartsson PR, Taherzadeh MJ (2016) Fungal protein and ethanol from lignocelluloses using Rhizopus pellets under simultaneous saccharification, filtration and fermentation (SSFF). Biofuel Res J 3:372–378CrossRef
go back to reference Fenton O (2012) Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): a review. Algal Res 1:49–56CrossRef Fenton O (2012) Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): a review. Algal Res 1:49–56CrossRef
go back to reference Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuels 20:1727–1737CrossRef Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuels 20:1727–1737CrossRef
go back to reference Francavilla M, Trotta P, Luque R (2010) Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Biores Technol 101:4144–4150CrossRef Francavilla M, Trotta P, Luque R (2010) Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Biores Technol 101:4144–4150CrossRef
go back to reference Gao T, Wong Y, Ng C, Ho K (2012) L-lactic acid production by Bacillus subtilis MUR1. Biores Technol 121:105–110CrossRef Gao T, Wong Y, Ng C, Ho K (2012) L-lactic acid production by Bacillus subtilis MUR1. Biores Technol 121:105–110CrossRef
go back to reference Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7:219–227 Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7:219–227
go back to reference González-Fernández C, Molinuevo-Salces B, García-González MC (2011) Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology. Appl Energy 88:3448–3453CrossRef González-Fernández C, Molinuevo-Salces B, García-González MC (2011) Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology. Appl Energy 88:3448–3453CrossRef
go back to reference Gravitis J, Suzuki M (1999) Biomass refinery–a way to produce value added products and base for agricultural zero emissions system. In: Proceedings of the international conference on agricultural engineering for 21st century, pp. 14–17 Gravitis J, Suzuki M (1999) Biomass refinery–a way to produce value added products and base for agricultural zero emissions system. In: Proceedings of the international conference on agricultural engineering for 21st century, pp. 14–17
go back to reference Hagman L, Blumenthal A, Eklund M, Svensson N (2017) The role of biogas solutions in sustainable biorefineries. J Cleaner Production Hagman L, Blumenthal A, Eklund M, Svensson N (2017) The role of biogas solutions in sustainable biorefineries. J Cleaner Production
go back to reference Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047CrossRef Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047CrossRef
go back to reference Hirschberg J (1999) Production of high-value compounds: carotenoids and vitamin E. Curr Opin Biotechnol 10:186–191CrossRef Hirschberg J (1999) Production of high-value compounds: carotenoids and vitamin E. Curr Opin Biotechnol 10:186–191CrossRef
go back to reference Huber GW (2008) Breaking the chemical engineering barriers to Lignocellulosic Biofuels Citeseer Huber GW (2008) Breaking the chemical engineering barriers to Lignocellulosic Biofuels Citeseer
go back to reference Janssen R, Rutz DD (2011) Sustainability of biofuels in Latin America: risks and opportunities. Energy Policy 39:5717–5725CrossRef Janssen R, Rutz DD (2011) Sustainability of biofuels in Latin America: risks and opportunities. Energy Policy 39:5717–5725CrossRef
go back to reference Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11:284–291CrossRef Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11:284–291CrossRef
go back to reference Kabir MM, Forgács G, Horváth IS (2015) Biogas from lignocellulosic materials, Lignocellulose-Based Bioproducts. Springer, pp. 207–251 Kabir MM, Forgács G, Horváth IS (2015) Biogas from lignocellulosic materials, Lignocellulose-Based Bioproducts. Springer, pp. 207–251
go back to reference Kamm B, Gruber PR, Kamm M (2006) Biorefineries-industrial processes and products. Biorefineries industrial processes and products. Wiley-VCH, Weinheim Kamm B, Gruber PR, Kamm M (2006) Biorefineries-industrial processes and products. Biorefineries industrial processes and products. Wiley-VCH, Weinheim
go back to reference Kamm B, Kamm M (2004b) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145CrossRef Kamm B, Kamm M (2004b) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145CrossRef
go back to reference Khoshnevisan B, Shafiei M, Rajaeifar MA, Tabatabaei M (2016) Biogas and bioethanol production from pinewood pre-treated with steam explosion and N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach. Energy 114:935–950CrossRef Khoshnevisan B, Shafiei M, Rajaeifar MA, Tabatabaei M (2016) Biogas and bioethanol production from pinewood pre-treated with steam explosion and N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach. Energy 114:935–950CrossRef
go back to reference Khoshnevisan B, Rafiee S, Tabatabaei M, Ghanavati H, Mohtasebi SS, Rahimi V, … & Karimi K (2017) Life cycle assessment of castor-based biorefinery: a well to wheel LCA. Int J Life Cycle Assess 1–18 Khoshnevisan B, Rafiee S, Tabatabaei M, Ghanavati H, Mohtasebi SS, Rahimi V, … & Karimi K (2017) Life cycle assessment of castor-based biorefinery: a well to wheel LCA. Int J Life Cycle Assess 1–18
go back to reference Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS PublicationsCrossRef Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS PublicationsCrossRef
go back to reference Lin Y, Wang D, Wu S, Wang C (2009) Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. J Hazard Mater 170:366–373CrossRef Lin Y, Wang D, Wu S, Wang C (2009) Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. J Hazard Mater 170:366–373CrossRef
go back to reference Mansoornejad B, Chambost V, Stuart P (2010) Integrating product portfolio design and supply chain design for the forest biorefinery. Comput Chem Eng 34:1497–1506CrossRef Mansoornejad B, Chambost V, Stuart P (2010) Integrating product portfolio design and supply chain design for the forest biorefinery. Comput Chem Eng 34:1497–1506CrossRef
go back to reference McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Biores Technol 83:47–54CrossRef McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Biores Technol 83:47–54CrossRef
go back to reference McMillan JD, Newman MM, Templeton DW, Mohagheghi A (1999) Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mobilis. Appl Biochem Biotechnol 79:649–665CrossRef McMillan JD, Newman MM, Templeton DW, Mohagheghi A (1999) Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mobilis. Appl Biochem Biotechnol 79:649–665CrossRef
go back to reference Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280CrossRef Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280CrossRef
go back to reference Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources 5:928–938 Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources 5:928–938
go back to reference Misra S, Gupta P, Raghuwanshi S, Dutt K, Saxena R (2011) Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep Purif Technol 78:266–273CrossRef Misra S, Gupta P, Raghuwanshi S, Dutt K, Saxena R (2011) Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep Purif Technol 78:266–273CrossRef
go back to reference Monnet F (2003) An introduction to anaerobic digestion of organic wastes. Remade Scotland, 1–48 Monnet F (2003) An introduction to anaerobic digestion of organic wastes. Remade Scotland, 1–48
go back to reference Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRef Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRef
go back to reference Negash M, Swinnen JF (2013) Biofuels and food security: micro-evidence from Ethiopia. Energy Policy 61:963–976CrossRef Negash M, Swinnen JF (2013) Biofuels and food security: micro-evidence from Ethiopia. Energy Policy 61:963–976CrossRef
go back to reference Nepstad DC, Stickler CM, Almeida OT (2006) Globalization of the Amazon soy and beef industries: opportunities for conservation. Conserv Biol 20:1595–1603CrossRef Nepstad DC, Stickler CM, Almeida OT (2006) Globalization of the Amazon soy and beef industries: opportunities for conservation. Conserv Biol 20:1595–1603CrossRef
go back to reference Octave S, Thomas D (2009) Biorefinery: toward an industrial metabolism. Biochimie 91:659–664CrossRef Octave S, Thomas D (2009) Biorefinery: toward an industrial metabolism. Biochimie 91:659–664CrossRef
go back to reference Odhner PB, Horváth I, Kabir MM, Schabbaeur A (2012) Biogas from lignocellulosic biomass. Svenskt Gastekniskt Center Odhner PB, Horváth I, Kabir MM, Schabbaeur A (2012) Biogas from lignocellulosic biomass. Svenskt Gastekniskt Center
go back to reference Ostlund RE, Racette SB, Stenson WF (2003) Inhibition of cholesterol absorption by phytosterol-replete wheat germ compared with phytosterol-depleted wheat germ. The American journal of clinical nutrition 77:1385–1389CrossRef Ostlund RE, Racette SB, Stenson WF (2003) Inhibition of cholesterol absorption by phytosterol-replete wheat germ compared with phytosterol-depleted wheat germ. The American journal of clinical nutrition 77:1385–1389CrossRef
go back to reference Pachapur V, Sarma S, Brar S, Chaabouni E (2016) Platform chemicals: significance and need Pachapur V, Sarma S, Brar S, Chaabouni E (2016) Platform chemicals: significance and need
go back to reference Parajuli R, Dalgaard T, Jørgensen U, Adamsen APS, Knudsen MT, Birkved M, Gylling M, Schjørring JK (2015) Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew Sustain Energy Rev 43:244–263CrossRef Parajuli R, Dalgaard T, Jørgensen U, Adamsen APS, Knudsen MT, Birkved M, Gylling M, Schjørring JK (2015) Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew Sustain Energy Rev 43:244–263CrossRef
go back to reference Pragya N, Pandey KK, Sahoo P (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171CrossRef Pragya N, Pandey KK, Sahoo P (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171CrossRef
go back to reference Provasoli L, Carlucci A (1974) Vitamins and growth regulators. Botanical monographs Provasoli L, Carlucci A (1974) Vitamins and growth regulators. Botanical monographs
go back to reference Rahimi V, Karimi K, Shafiei M, Naghavi R, Khoshnevisan B, Ghanavati H, … & Tabatabaei M (2018) Well-to-wheel life cycle assessment of Eruca Sativa-based biorefinery. Renew Energy 117:135–149CrossRef Rahimi V, Karimi K, Shafiei M, Naghavi R, Khoshnevisan B, Ghanavati H, … & Tabatabaei M (2018) Well-to-wheel life cycle assessment of Eruca Sativa-based biorefinery. Renew Energy 117:135–149CrossRef
go back to reference Ramos-Suárez JL, Cuadra FG, Acién FG, Carreras N (2014) Benefits of combining anaerobic digestion and amino acid extraction from microalgae. Chem Eng J 258:1–9CrossRef Ramos-Suárez JL, Cuadra FG, Acién FG, Carreras N (2014) Benefits of combining anaerobic digestion and amino acid extraction from microalgae. Chem Eng J 258:1–9CrossRef
go back to reference Ravindranath N, Lakshmi CS, Manuvie R, Balachandra P (2011) Biofuel production and implications for land use, food production and environment in India. Energy Policy 39:5737–5745CrossRef Ravindranath N, Lakshmi CS, Manuvie R, Balachandra P (2011) Biofuel production and implications for land use, food production and environment in India. Energy Policy 39:5737–5745CrossRef
go back to reference Reijnders L (2008) Do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26:349–350CrossRef Reijnders L (2008) Do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26:349–350CrossRef
go back to reference Rosentrater KA, Hall HR, Hansen CL (2006) Anaerobic digestion potential for ethanol processing residues. In: 2006 ASAE annual meeting. american society of agricultural and biological engineers, p 1 Rosentrater KA, Hall HR, Hansen CL (2006) Anaerobic digestion potential for ethanol processing residues. In: 2006 ASAE annual meeting. american society of agricultural and biological engineers, p 1
go back to reference Roy S, Das D (2015) Gaseous fuels production from Algal biomass, Algal Biorefinery: an integrated approach. Springer, Berlin, pp 297–319CrossRef Roy S, Das D (2015) Gaseous fuels production from Algal biomass, Algal Biorefinery: an integrated approach. Springer, Berlin, pp 297–319CrossRef
go back to reference Russo C, Sant’Anna G, de Carvalho Pereira SE (1985) An anaerobic filter applied to the treatment of distillery wastewaters. Agricu Wastes 14:301–313CrossRef Russo C, Sant’Anna G, de Carvalho Pereira SE (1985) An anaerobic filter applied to the treatment of distillery wastewaters. Agricu Wastes 14:301–313CrossRef
go back to reference Safari A, Karimi K, Shafiei M (2017) Dilute alkali pretreatment of softwood pine: a biorefinery approach. Biores Technol 234:67–76CrossRef Safari A, Karimi K, Shafiei M (2017) Dilute alkali pretreatment of softwood pine: a biorefinery approach. Biores Technol 234:67–76CrossRef
go back to reference Santamaría-Fernández M, Molinuevo-Salces B, Lübeck M, Uellendahl H (2017) Biogas potential of green biomass after protein extraction in an organic biorefinery concept for feed, fuel and fertilizer production. Renew Energy Santamaría-Fernández M, Molinuevo-Salces B, Lübeck M, Uellendahl H (2017) Biogas potential of green biomass after protein extraction in an organic biorefinery concept for feed, fuel and fertilizer production. Renew Energy
go back to reference Schmidt T, Pröter J, Scholwin F, Nelles M (2013) Anaerobic digestion of grain stillage at high organic loading rates in three different reactor systems. Biomass Bioenerg 55:285–290CrossRef Schmidt T, Pröter J, Scholwin F, Nelles M (2013) Anaerobic digestion of grain stillage at high organic loading rates in three different reactor systems. Biomass Bioenerg 55:285–290CrossRef
go back to reference Shafiei M, Karimi K, Taherzadeh MJ (2011) Techno-economical study of ethanol and biogas from spruce wood by NMMO-pretreatment and rapid fermentation and digestion. Biores Technol 102:7879–7886CrossRef Shafiei M, Karimi K, Taherzadeh MJ (2011) Techno-economical study of ethanol and biogas from spruce wood by NMMO-pretreatment and rapid fermentation and digestion. Biores Technol 102:7879–7886CrossRef
go back to reference Shafiei M, Kumar R, Karimi K (2015) Pretreatment of lignocellulosic biomass, Lignocellulose-based bioproducts. Springer, pp 85–154 Shafiei M, Kumar R, Karimi K (2015) Pretreatment of lignocellulosic biomass, Lignocellulose-based bioproducts. Springer, pp 85–154
go back to reference Sharara MA, Clausen EC, Carrier DJ (2012) An overview of biorefinery technology. Biorefinery co-products: phytochemicals, primary metabolites and value-added biomass processing, 1–18 Sharara MA, Clausen EC, Carrier DJ (2012) An overview of biorefinery technology. Biorefinery co-products: phytochemicals, primary metabolites and value-added biomass processing, 1–18
go back to reference Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. Nat Renew Energy, Laboratory, p 328CrossRef Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. Nat Renew Energy, Laboratory, p 328CrossRef
go back to reference Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416CrossRef Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416CrossRef
go back to reference Soyez K, Kamm B, Kamm M (1997) The green biorefinery. In: Proceedings of 1st international green biorefinery conference, Neuruppin, Germany Soyez K, Kamm B, Kamm M (1997) The green biorefinery. In: Proceedings of 1st international green biorefinery conference, Neuruppin, Germany
go back to reference Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRef Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRef
go back to reference St-Onge M-P, Lamarche BT, Mauger J-F, Jones PJ (2003) Consumption of a functional oil rich in phytosterols and medium-chain triglyceride oil improves plasma lipid profiles in men. J Nutr 133:1815–1820CrossRef St-Onge M-P, Lamarche BT, Mauger J-F, Jones PJ (2003) Consumption of a functional oil rich in phytosterols and medium-chain triglyceride oil improves plasma lipid profiles in men. J Nutr 133:1815–1820CrossRef
go back to reference Stephens E, Ross IL, Hankamer B (2013) Expanding the microalgal industry–continuing controversy or compelling case? Curr Opin Chem Biol 17:444–452CrossRef Stephens E, Ross IL, Hankamer B (2013) Expanding the microalgal industry–continuing controversy or compelling case? Curr Opin Chem Biol 17:444–452CrossRef
go back to reference Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564CrossRef Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564CrossRef
go back to reference Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24:4062–4077CrossRef Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24:4062–4077CrossRef
go back to reference Szmant HH (1989) Organic building blocks of the chemical industry. Wiley Szmant HH (1989) Organic building blocks of the chemical industry. Wiley
go back to reference Take H, Andou Y, Nakamura Y, Kobayashi F, Kurimoto Y, Kuwahara M (2006) Production of methane gas from Japanese cedar chips pretreated by various delignification methods. Biochem Eng J 28:30–35CrossRef Take H, Andou Y, Nakamura Y, Kobayashi F, Kurimoto Y, Kuwahara M (2006) Production of methane gas from Japanese cedar chips pretreated by various delignification methods. Biochem Eng J 28:30–35CrossRef
go back to reference Teghammar A, Yngvesson J, Lundin M, Taherzadeh MJ, Horváth IS (2010) Pretreatment of paper tube residuals for improved biogas production. Biores Technol 101:1206–1212CrossRef Teghammar A, Yngvesson J, Lundin M, Taherzadeh MJ, Horváth IS (2010) Pretreatment of paper tube residuals for improved biogas production. Biores Technol 101:1206–1212CrossRef
go back to reference Tu RS, Tirrell M (2004) Bottom-up design of biomimetic assemblies. Adv Drug Deliv Rev 56:1537–1563CrossRef Tu RS, Tirrell M (2004) Bottom-up design of biomimetic assemblies. Adv Drug Deliv Rev 56:1537–1563CrossRef
go back to reference van Ree R, Annevelink E (2007) Status report biorefinery 2007. Agrotechnology & Food Sciences Group van Ree R, Annevelink E (2007) Status report biorefinery 2007. Agrotechnology & Food Sciences Group
go back to reference Wang M, Hess R, Wright C, Ibsen K, Ruth M, Jechura J, Spath P, Graham R, Sokhansanj S, Perlack R (2004) Office of the Biomass Program: Multi-Year Analysis Plan, FY04-FY08. National Renewable Energy Lab, Golden, CO (US) Wang M, Hess R, Wright C, Ibsen K, Ruth M, Jechura J, Spath P, Graham R, Sokhansanj S, Perlack R (2004) Office of the Biomass Program: Multi-Year Analysis Plan, FY04-FY08. National Renewable Energy Lab, Golden, CO (US)
go back to reference Ward A, Lewis D, Green F (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214CrossRef Ward A, Lewis D, Green F (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214CrossRef
go back to reference Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313CrossRef Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313CrossRef
go back to reference Wellinger A, Murphy JD, Baxter D (2013) The biogas handbook: science, production and applications. Elsevier Wellinger A, Murphy JD, Baxter D (2013) The biogas handbook: science, production and applications. Elsevier
go back to reference Werpy T, Petersen G (2004) Top value added chemicals from biomass. US Department of Energy, Office of Scientific and Technical Information, No.: DOE/GO-102004–1992. https://www.osti.gov/ Werpy T, Petersen G (2004) Top value added chemicals from biomass. US Department of Energy, Office of Scientific and Technical Information, No.: DOE/GO-102004–1992. https://​www.​osti.​gov/​
go back to reference Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim, A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas. DTIC Document Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim, A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas. DTIC Document
go back to reference Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenerg 19:63–102CrossRef Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenerg 19:63–102CrossRef
go back to reference Williams PJLB Laurens LM (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590CrossRef Williams PJLB Laurens LM (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590CrossRef
go back to reference Yang S-T, Yu M (2013) Integrated biorefinery for sustainable production of fuels, chemicals, and polymers. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers 1CrossRef Yang S-T, Yu M (2013) Integrated biorefinery for sustainable production of fuels, chemicals, and polymers. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers 1CrossRef
go back to reference Ye L, Zhou X, Hudari MSB, Li Z, Wu JC (2013) Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Biores Technol 132:38–44CrossRef Ye L, Zhou X, Hudari MSB, Li Z, Wu JC (2013) Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Biores Technol 132:38–44CrossRef
go back to reference Zhang C-H, Ma Y-J, Yang F-X, Liu W, Zhang Y-D (2009) Optimization of medium composition for butyric acid production by Clostridium thermobutyricum using response surface methodology. Biores Technol 100:4284–4288CrossRef Zhang C-H, Ma Y-J, Yang F-X, Liu W, Zhang Y-D (2009) Optimization of medium composition for butyric acid production by Clostridium thermobutyricum using response surface methodology. Biores Technol 100:4284–4288CrossRef
go back to reference Zhong W, Zhang Z, Luo Y, Qiao W, Xiao M, Zhang M (2012) Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Biores Technol 114:281–286CrossRef Zhong W, Zhang Z, Luo Y, Qiao W, Xiao M, Zhang M (2012) Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Biores Technol 114:281–286CrossRef
Metadata
Title
Biorefineries: Focusing on a Closed Cycle Approach with Biogas as the Final Step
Authors
Benyamin Khoshnevisan
Irini Angelidaki
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-77335-3_11