Skip to main content

2015 | OriginalPaper | Buchkapitel

14. Gaseous Fuels Production from Algal Biomass

verfasst von : Shantonu Roy, Debabrata Das

Erschienen in: Algal Biorefinery: An Integrated Approach

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The most abundant renewable energy available to us is solar energy. It provides 178,000 TW energy to the Earth per year (Rupprecht et al., Appl Microbiol Biotechnol 72:442–449, 2006). Entrapment of such consistent source of energy has been performed by photosynthetic organisms. The interest for microalgae is growing worldwide for their ability to harness solar energy and consequently providing biomass that can be used as feedstock for renewable energy generation. The rate of CO2 fixation was up to 6.24 kg m−3 day−1 (Cheng et al. 2006, Sep Purif Technol 50:324–329). The productivity of algae could be 10 times higher (50 ton dry weight (DW) per hectare per year) when compared with conventional agricultural crops (Murphy and Power, Appl Energy 86:25–36 2009; Wijffels, Trends Biotechnol 26:26–31, 2008).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A. and Domíguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol., 22, 477–485.CrossRef Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A. and Domíguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol., 22, 477–485.CrossRef
Zurück zum Zitat Braun, R., Huber, P. and Meyrath, J. (1981). Ammonia toxicity in liquid piggery manure digestion. Biotechnol. Lett., 3, 159–164.CrossRef Braun, R., Huber, P. and Meyrath, J. (1981). Ammonia toxicity in liquid piggery manure digestion. Biotechnol. Lett., 3, 159–164.CrossRef
Zurück zum Zitat Buswell, A.M. and Mueller, H.F. (1952). Mechanism of Methane Fermentation. Ind. Eng. Chem., 44, 550–552.CrossRef Buswell, A.M. and Mueller, H.F. (1952). Mechanism of Methane Fermentation. Ind. Eng. Chem., 44, 550–552.CrossRef
Zurück zum Zitat Chen, H.-C., Yokthongwattana, K., Newton, A.J. and Melis, A. (2003). SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. Planta, 218, 98–106.CrossRef Chen, H.-C., Yokthongwattana, K., Newton, A.J. and Melis, A. (2003). SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. Planta, 218, 98–106.CrossRef
Zurück zum Zitat Chen, Y., Cheng, J.J. and Creamer, K.S. (2008). Inhibition of anaerobic digestion process: A review. Bioresour. Technol., 99, 4044–4064.CrossRef Chen, Y., Cheng, J.J. and Creamer, K.S. (2008). Inhibition of anaerobic digestion process: A review. Bioresour. Technol., 99, 4044–4064.CrossRef
Zurück zum Zitat Cheng, L., Zhang, L., Chen, H. and Gao, C. (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep. Purif. Technol., 50, 324–329.CrossRef Cheng, L., Zhang, L., Chen, H. and Gao, C. (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep. Purif. Technol., 50, 324–329.CrossRef
Zurück zum Zitat Chynoweth, D.P., Owens, J.M. and Legrand, R. (2001). Renewable methane from anaerobic digestion of biomass. Renew. Energy, 22, 1–8.CrossRef Chynoweth, D.P., Owens, J.M. and Legrand, R. (2001). Renewable methane from anaerobic digestion of biomass. Renew. Energy, 22, 1–8.CrossRef
Zurück zum Zitat Dickson, D., Page, C. and Ely, R. (2009). Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol–gel. Int. J. Hydrogen Energy, 34, 204–215.CrossRef Dickson, D., Page, C. and Ely, R. (2009). Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol–gel. Int. J. Hydrogen Energy, 34, 204–215.CrossRef
Zurück zum Zitat Finazzi, G., Rappaport, F., Furia, A., Fleischmann, M., Rochaix, J.-D., Zito, F. and Forti, G. (2002). Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep., 3, 280–285.CrossRef Finazzi, G., Rappaport, F., Furia, A., Fleischmann, M., Rochaix, J.-D., Zito, F. and Forti, G. (2002). Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep., 3, 280–285.CrossRef
Zurück zum Zitat Gerardi, M.H. (2003). The Microbiology of Anaerobic Digesters (Google eBook). John Wiley & Sons, USA, ISBN 0-471-20693-8. Gerardi, M.H. (2003). The Microbiology of Anaerobic Digesters (Google eBook). John Wiley & Sons, USA, ISBN 0-471-20693-8.
Zurück zum Zitat Gibson, R.N. and Atkinson, R.J.A. (eds) (2003). Oceanography and Marine Biology, An Annual Review, Volume 41. CRC Press, USA. Gibson, R.N. and Atkinson, R.J.A. (eds) (2003). Oceanography and Marine Biology, An Annual Review, Volume 41. CRC Press, USA.
Zurück zum Zitat Godfroy, A., Raven, N.D.H. and Sharp, R.J. (2000). Physiology and continuous culture of the hyperthermophilic deep-sea vent archaeon Pyrococcus abyssi ST549. FEMS Microbiol. Lett., 186, 127–132. Godfroy, A., Raven, N.D.H. and Sharp, R.J. (2000). Physiology and continuous culture of the hyperthermophilic deep-sea vent archaeon Pyrococcus abyssi ST549. FEMS Microbiol. Lett., 186, 127–132.
Zurück zum Zitat Gujer, W. and Zehnder, A.J.B. (1983). Conversion Processes in Anaerobic Digestion. Water Sci. Technol., 15(8–9), 1276–1277. Gujer, W. and Zehnder, A.J.B. (1983). Conversion Processes in Anaerobic Digestion. Water Sci. Technol., 15(8–9), 1276–1277.
Zurück zum Zitat Hansen, K.H., Angelidaki, I. and Ahring, B.K. (1998). Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res., 32, 5–12.CrossRef Hansen, K.H., Angelidaki, I. and Ahring, B.K. (1998). Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res., 32, 5–12.CrossRef
Zurück zum Zitat Kida, K., Shigematsu, T., Kijima, J., Numaguchi, M., Mochinaga, Y., Abe, N. and Morimura, S. (2001). Influence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis. J. Biosci. Bioeng., 91, 590–595.CrossRef Kida, K., Shigematsu, T., Kijima, J., Numaguchi, M., Mochinaga, Y., Abe, N. and Morimura, S. (2001). Influence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis. J. Biosci. Bioeng., 91, 590–595.CrossRef
Zurück zum Zitat Kim, M., Baek, J., Yun, Y., Junsim, S., Park, S. and Kim, S. (2006). Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. Int. J. Hydrogen Energy, 31, 812–816.CrossRef Kim, M., Baek, J., Yun, Y., Junsim, S., Park, S. and Kim, S. (2006). Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. Int. J. Hydrogen Energy, 31, 812–816.CrossRef
Zurück zum Zitat King, G.M., Guist, G.G. and Lauterbach, G.E. (1985). Anaerobic Degradation of Carrageenan from the Red Macroalga Eucheuma cottonii. Appl. Envir. Microbiol., 49, 588–592. King, G.M., Guist, G.G. and Lauterbach, G.E. (1985). Anaerobic Degradation of Carrageenan from the Red Macroalga Eucheuma cottonii. Appl. Envir. Microbiol., 49, 588–592.
Zurück zum Zitat Kruse, O., Rupprecht, J., Bader, K.-P., Thomas-Hall, S., Schenk, P.M., Finazzi, G. and Hankamer, B. (2005). Improved photobiological H2 production in engineered green algal cells. J. Biol. Chem., 280, 34170–34177.CrossRef Kruse, O., Rupprecht, J., Bader, K.-P., Thomas-Hall, S., Schenk, P.M., Finazzi, G. and Hankamer, B. (2005). Improved photobiological H2 production in engineered green algal cells. J. Biol. Chem., 280, 34170–34177.CrossRef
Zurück zum Zitat Kumar, K., Roy, S. and Das, D. (2013). Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresour. Technol., 145, 116–122.CrossRef Kumar, K., Roy, S. and Das, D. (2013). Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresour. Technol., 145, 116–122.CrossRef
Zurück zum Zitat Lee, J.W. (ed.) (2013). Advanced Biofuels and Bioproducts. Springer New York, New York, NY. Lee, J.W. (ed.) (2013). Advanced Biofuels and Bioproducts. Springer New York, New York, NY.
Zurück zum Zitat Lettinga, G. (2001). Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol., 19, 363–370.CrossRef Lettinga, G. (2001). Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol., 19, 363–370.CrossRef
Zurück zum Zitat Meher Kotay, S. and Das, D. (2008). Biohydrogen as a renewable energy resource—Prospects and potentials. Int. J. Hydrogen Energy, 33, 258–263.CrossRef Meher Kotay, S. and Das, D. (2008). Biohydrogen as a renewable energy resource—Prospects and potentials. Int. J. Hydrogen Energy, 33, 258–263.CrossRef
Zurück zum Zitat Murphy, J.D. and Power, N. (2009). Technical and economic analysis of biogas production in Ireland utilising three different crop rotations. Appl. Energy, 86, 25–36.CrossRef Murphy, J.D. and Power, N. (2009). Technical and economic analysis of biogas production in Ireland utilising three different crop rotations. Appl. Energy, 86, 25–36.CrossRef
Zurück zum Zitat Mussgnug, J.H., Klassen, V., Schlüter, A. and Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol., 150, 51–56.CrossRef Mussgnug, J.H., Klassen, V., Schlüter, A. and Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol., 150, 51–56.CrossRef
Zurück zum Zitat Nayak, B.K., Roy, S. and Das, D. (2014). Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. Int. J. Hydrogen Energy, 39, 7553–7560.CrossRef Nayak, B.K., Roy, S. and Das, D. (2014). Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. Int. J. Hydrogen Energy, 39, 7553–7560.CrossRef
Zurück zum Zitat Nguyen, T.-A.D., Kim, K.-R., Nguyen, M.-T., Kim, M.S., Kim, D. and Sim, S.J. (2010). Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. Int. J. Hydrogen Energy, 35, 13035–13040.CrossRef Nguyen, T.-A.D., Kim, K.-R., Nguyen, M.-T., Kim, M.S., Kim, D. and Sim, S.J. (2010). Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. Int. J. Hydrogen Energy, 35, 13035–13040.CrossRef
Zurück zum Zitat Nizami, A.S., Korres, E.N. and Murphy, J.D. (2009). Review of the Integrated Process for the Production of Grass Biomethane. Environ. Sci. Technol.. 43, 8496–8508.CrossRef Nizami, A.S., Korres, E.N. and Murphy, J.D. (2009). Review of the Integrated Process for the Production of Grass Biomethane. Environ. Sci. Technol.. 43, 8496–8508.CrossRef
Zurück zum Zitat Pathak, H., Jain, N., Bhatia, A., Mohanty, S. and Gupta, N. (2009). Global warming mitigation potential of biogas plants in India. Environ. Monit. Assess., 157, 407–418.CrossRef Pathak, H., Jain, N., Bhatia, A., Mohanty, S. and Gupta, N. (2009). Global warming mitigation potential of biogas plants in India. Environ. Monit. Assess., 157, 407–418.CrossRef
Zurück zum Zitat Polle, J. (2002). Truncated chlorophyll antenna size of the photosystems? A practical method to improve microalgal productivity and hydrogen production in mass culture. Int. J. Hydrogen Energy, 27, 1257–1264.CrossRef Polle, J. (2002). Truncated chlorophyll antenna size of the photosystems? A practical method to improve microalgal productivity and hydrogen production in mass culture. Int. J. Hydrogen Energy, 27, 1257–1264.CrossRef
Zurück zum Zitat Prince, R.C. and Kheshgi, H.S. (2005). The Photobiological Production of Hydrogen: Potential Efficiency and Effectiveness as a Renewable Fuel. Crit. Rev. Microbiol., 31(1), 19–31.CrossRef Prince, R.C. and Kheshgi, H.S. (2005). The Photobiological Production of Hydrogen: Potential Efficiency and Effectiveness as a Renewable Fuel. Crit. Rev. Microbiol., 31(1), 19–31.CrossRef
Zurück zum Zitat Rees, D.A. and Welsh, E.J. (1977). Secondary and Tertiary Structure of Polysaccharides in Solutions and Gels. Angew. Chemie Int. Ed. English, 16, 214–224. Rees, D.A. and Welsh, E.J. (1977). Secondary and Tertiary Structure of Polysaccharides in Solutions and Gels. Angew. Chemie Int. Ed. English, 16, 214–224.
Zurück zum Zitat Rosenberg, J.N., Oyler, G.A., Wilkinson, L. and Betenbaugh, M.J. (2008). A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol., 19, 430–436.CrossRef Rosenberg, J.N., Oyler, G.A., Wilkinson, L. and Betenbaugh, M.J. (2008). A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol., 19, 430–436.CrossRef
Zurück zum Zitat Roy, S., Kumar, K., Ghosh, S. and Das, D. (2014). Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166.CrossRef Roy, S., Kumar, K., Ghosh, S. and Das, D. (2014). Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166.CrossRef
Zurück zum Zitat Rupprecht, J., Hankamer, B., Mussgnug, J.H., Ananyev, G., Dismukes, C. and Kruse, O. (2006). Perspectives and advances of biological H2 production in microorganisms. Appl. Microbiol. Biotechnol., 72, 442–449.CrossRef Rupprecht, J., Hankamer, B., Mussgnug, J.H., Ananyev, G., Dismukes, C. and Kruse, O. (2006). Perspectives and advances of biological H2 production in microorganisms. Appl. Microbiol. Biotechnol., 72, 442–449.CrossRef
Zurück zum Zitat Samson, R. and LeDuyt, A. (1986). Detailed study of anaerobic digestion of Spirulina maxima algal biomass. Biotechnol. Bioeng., 28, 1014–1023.CrossRef Samson, R. and LeDuyt, A. (1986). Detailed study of anaerobic digestion of Spirulina maxima algal biomass. Biotechnol. Bioeng., 28, 1014–1023.CrossRef
Zurück zum Zitat Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev., 61, 262–280. Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev., 61, 262–280.
Zurück zum Zitat Schröder, C., Selig, M. and Schünheit, P. (1994). Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: Involvement of the Embden-Meyerhof pathway. Arch. Microbiol., 161, 460–470. Schröder, C., Selig, M. and Schünheit, P. (1994). Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: Involvement of the Embden-Meyerhof pathway. Arch. Microbiol., 161, 460–470.
Zurück zum Zitat Skjånes, K., Lindblad, P. and Muller, J. (2007). BioCO2—A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol. Eng., 24, 405–413.CrossRef Skjånes, K., Lindblad, P. and Muller, J. (2007). BioCO2—A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol. Eng., 24, 405–413.CrossRef
Zurück zum Zitat Speece, R.E. (1983). Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol., 17, 416A–427A.CrossRef Speece, R.E. (1983). Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol., 17, 416A–427A.CrossRef
Zurück zum Zitat Stephenson, M. and Stickland, L.H. (1932). Bacterial enzyme liberating molecular hydrogen. Biochem. J., 26, 712–724.CrossRef Stephenson, M. and Stickland, L.H. (1932). Bacterial enzyme liberating molecular hydrogen. Biochem. J., 26, 712–724.CrossRef
Zurück zum Zitat Sterling, M., Lacey, R., Engler, C. and Ricke, S. (2001). Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of dairy cattle manure. Bioresour. Technol., 77, 9–18.CrossRef Sterling, M., Lacey, R., Engler, C. and Ricke, S. (2001). Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of dairy cattle manure. Bioresour. Technol., 77, 9–18.CrossRef
Zurück zum Zitat Taguchi, F., Yamada, K., Hasegawa, K., Taki-Saito, T. and Hara, K. (1996). Continuous hydrogen production by Clostridium sp. strain no. 2 from cellulose hydrolysate in an aqueous two-phase system. J. Ferment. Bioeng., 82, 80–83.CrossRef Taguchi, F., Yamada, K., Hasegawa, K., Taki-Saito, T. and Hara, K. (1996). Continuous hydrogen production by Clostridium sp. strain no. 2 from cellulose hydrolysate in an aqueous two-phase system. J. Ferment. Bioeng., 82, 80–83.CrossRef
Zurück zum Zitat Takeda, H. (1988). Classification of Chlorella strains by cell wall sugar composition. Phytochemistry, 27, 3823–3826.CrossRef Takeda, H. (1988). Classification of Chlorella strains by cell wall sugar composition. Phytochemistry, 27, 3823–3826.CrossRef
Zurück zum Zitat Tamagnini, P., Leitão, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D.J., Heidorn, T. and Lindblad, P. (2007). Cyanobacterial hydrogenases: Diversity, regulation and applications. FEMS Microbiol. Rev., 31, 692–720.CrossRef Tamagnini, P., Leitão, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D.J., Heidorn, T. and Lindblad, P. (2007). Cyanobacterial hydrogenases: Diversity, regulation and applications. FEMS Microbiol. Rev., 31, 692–720.CrossRef
Zurück zum Zitat Tamburic, B., Zemichael, F.W., Maitland, G.C. and Hellgardt, K. (2011). Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Int. J. Hydrogen Energy, 36, 7872–7876.CrossRef Tamburic, B., Zemichael, F.W., Maitland, G.C. and Hellgardt, K. (2011). Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Int. J. Hydrogen Energy, 36, 7872–7876.CrossRef
Zurück zum Zitat Valdezvazquez, I., Riosleal, E., Esparzagarcia, F., Cecchi, F. and Poggivaraldo, H. (2005). Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime. Int. J. Hydrogen Energy, 30, 1383–1391.CrossRef Valdezvazquez, I., Riosleal, E., Esparzagarcia, F., Cecchi, F. and Poggivaraldo, H. (2005). Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime. Int. J. Hydrogen Energy, 30, 1383–1391.CrossRef
Zurück zum Zitat Vergarafernandez, A., Vargas, G., Alarcon, N. and Velasco, A. (2008). Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 32, 338–344.CrossRef Vergarafernandez, A., Vargas, G., Alarcon, N. and Velasco, A. (2008). Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 32, 338–344.CrossRef
Zurück zum Zitat Wijffels, R.H. (2008). Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol., 26, 26–31.CrossRef Wijffels, R.H. (2008). Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol., 26, 26–31.CrossRef
Zurück zum Zitat Yen, H.-W. and Brune, D.E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol., 98, 130–134.CrossRef Yen, H.-W. and Brune, D.E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol., 98, 130–134.CrossRef
Metadaten
Titel
Gaseous Fuels Production from Algal Biomass
verfasst von
Shantonu Roy
Debabrata Das
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-22813-6_14