Skip to main content
Top

2020 | OriginalPaper | Chapter

Blended Antilock Braking System Control Method for All-Wheel Drive Electric Sport Utility Vehicle

Authors : Andrei Aksjonov, Ph.D., Valery Vodovozov, Klaus Augsburg, Eduard Petlenkov

Published in: ELECTRIMACS 2019

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

At least two different actuators work in cooperation in regenerative braking for electric and hybrid vehicles. Torque blending is an important area, which is responsible for better manoeuvrability, reduced braking distance, improved riding comfort, etc. In this paper, a control method for electric vehicle blended antilock braking system based on fuzzy logic is promoted. The principle prioritizes usage of electric motor actuators to maximize recuperation energy during deceleration process. Moreover, for supreme efficiency it considers the battery’s state of charge for switching between electric motor and conventional electrohydraulic brakes. To demonstrate the functionality of the controller under changing dynamic conditions, a hardware-in-the-loop simulation with real electrohydraulic brakes test bed is utilized. In particular, the experiment is designed to exceed the state-of-charge threshold during braking operation, what leads to immediate switch between regenerative and friction brake modes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Ehsani, Y. Gao, S.E. Gay, A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles (CRC Press, Boca Raton, FL, 2005) M. Ehsani, Y. Gao, S.E. Gay, A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles (CRC Press, Boca Raton, FL, 2005)
2.
go back to reference A. Emadi, Handbook of Automotive Power Electronics and Motor Drives (Taylor and Francis Group, Boca Raton, FL, 2005) A. Emadi, Handbook of Automotive Power Electronics and Motor Drives (Taylor and Francis Group, Boca Raton, FL, 2005)
3.
go back to reference V. Ivanov, A review of fuzzy methods in automotive engineering applications. Eur. Transp. Res. Rev. 7, 1–10 (2015)CrossRef V. Ivanov, A review of fuzzy methods in automotive engineering applications. Eur. Transp. Res. Rev. 7, 1–10 (2015)CrossRef
4.
go back to reference X. Zhang, Y. Wang, G. Liu, X. Yuan, Robust regenerative charging control based on T–S fuzzy sliding-mode approach for advanced electric vehicle. IEEE Trans. Transp. Electrif. 2, 52–65 (2016)CrossRef X. Zhang, Y. Wang, G. Liu, X. Yuan, Robust regenerative charging control based on T–S fuzzy sliding-mode approach for advanced electric vehicle. IEEE Trans. Transp. Electrif. 2, 52–65 (2016)CrossRef
5.
go back to reference G. Xu, W. Li, K. Xu, Z. Song, An intelligent regenerative braking strategy for electric vehicles. Energies 4, 1461–1477 (2011)CrossRef G. Xu, W. Li, K. Xu, Z. Song, An intelligent regenerative braking strategy for electric vehicles. Energies 4, 1461–1477 (2011)CrossRef
6.
go back to reference J. Zhang, B. Song, S. Cui, J. Zhang, D. Ren, Fuzzy logic approach to regenerative braking system, in 2009 Intern. Conf. on Intel. Human–Machine Syst. and Cybern., (2009), pp. 451–454 J. Zhang, B. Song, S. Cui, J. Zhang, D. Ren, Fuzzy logic approach to regenerative braking system, in 2009 Intern. Conf. on Intel. Human–Machine Syst. and Cybern., (2009), pp. 451–454
7.
go back to reference X. Li, L. Xu, L. Hua, J. Li, M. Ouyang, Regenerative braking control strategy for fuel cell hybrid vehicles using fuzzy logic, in 2008 Intern. Conf. on Elect. Machines and Syst., (2008), pp. 2712–2716 X. Li, L. Xu, L. Hua, J. Li, M. Ouyang, Regenerative braking control strategy for fuel cell hybrid vehicles using fuzzy logic, in 2008 Intern. Conf. on Elect. Machines and Syst., (2008), pp. 2712–2716
8.
go back to reference X. Nian, F. Peng, H. Zhang, Regenerative braking system of electric vehicle driven by brushless DC motor. IEEE Trans. Ind. Elect. 61, 5798–5808 (2014)CrossRef X. Nian, F. Peng, H. Zhang, Regenerative braking system of electric vehicle driven by brushless DC motor. IEEE Trans. Ind. Elect. 61, 5798–5808 (2014)CrossRef
9.
go back to reference D.-H. Kim, J.-M. Kim, S.-H. Hwang, H.-S. Kim, Optimal brake torque distribution for a four-wheel-drive hybrid electric vehicle stability enhancement. Proc. Inst. Mech. Eng. D J. Automob. Eng. 221, 1357–1366 (2007)CrossRef D.-H. Kim, J.-M. Kim, S.-H. Hwang, H.-S. Kim, Optimal brake torque distribution for a four-wheel-drive hybrid electric vehicle stability enhancement. Proc. Inst. Mech. Eng. D J. Automob. Eng. 221, 1357–1366 (2007)CrossRef
10.
go back to reference D. Paul, E. Velenis, D. Cao, T. Dobo, Otpimal μ-estimation based regenerative braking strategy for an AWD HEV. IEEE Trans. Transp. Electrif. 3, 249–258 (2017)CrossRef D. Paul, E. Velenis, D. Cao, T. Dobo, Otpimal μ-estimation based regenerative braking strategy for an AWD HEV. IEEE Trans. Transp. Electrif. 3, 249–258 (2017)CrossRef
11.
go back to reference D. Savitski, V. Ivanov, B. Shyrokau, T. Pütz, J. de Smet, J. Theunissen, Experimental investigation on continuous regenerative anti-lock braking system of full electric vehicle. Int. J. Automotive Technol. 17, 327–338 (2016)CrossRef D. Savitski, V. Ivanov, B. Shyrokau, T. Pütz, J. de Smet, J. Theunissen, Experimental investigation on continuous regenerative anti-lock braking system of full electric vehicle. Int. J. Automotive Technol. 17, 327–338 (2016)CrossRef
12.
go back to reference P. Dong, Z. Jianwu, Y. Chengliang, Regenerative braking control system improvement for parallel hybrid electric vehicle, in Intern. Technol. Innov. Conf. 2016 (ITIC 2006), (2006), pp. 1902–1908CrossRef P. Dong, Z. Jianwu, Y. Chengliang, Regenerative braking control system improvement for parallel hybrid electric vehicle, in Intern. Technol. Innov. Conf. 2016 (ITIC 2006), (2006), pp. 1902–1908CrossRef
13.
go back to reference J. Guo, X. Jian, G. Lin, Performance evaluation of an anti-lock braking system for electric vehicles with a fuzzy sliding mode controller. Energies 7, 6459–6476 (2014)CrossRef J. Guo, X. Jian, G. Lin, Performance evaluation of an anti-lock braking system for electric vehicles with a fuzzy sliding mode controller. Energies 7, 6459–6476 (2014)CrossRef
14.
go back to reference B. Shyrokau, D. Wang, D. Savitsky, V. Ivanov, Vehicle dynamics control with energy recuperation based on control allocation for independent wheel motors and brake system. Int. J. Powertrain 2, 153–181 (2013)CrossRef B. Shyrokau, D. Wang, D. Savitsky, V. Ivanov, Vehicle dynamics control with energy recuperation based on control allocation for independent wheel motors and brake system. Int. J. Powertrain 2, 153–181 (2013)CrossRef
15.
go back to reference A. Aksjonov, V. Vodovozov, Z. Raud, Improving energy recovery in blended antilock braking systems of electric vehicles, in 16th Inter. Conf. of Indust. Informat. (INDIN’2018), (2018), pp. 589–594 A. Aksjonov, V. Vodovozov, Z. Raud, Improving energy recovery in blended antilock braking systems of electric vehicles, in 16th Inter. Conf. of Indust. Informat. (INDIN’2018), (2018), pp. 589–594
16.
go back to reference A. Aksjonov, V. Vodovozov, K. Augsburg, E. Petlenkov, Design of regenerative anti-lock braking system controller for 4-in-wheel-motor drive electric vehicle with road surface estimation. Int. J. Automotive Technol. 19, 727–742 (2018)CrossRef A. Aksjonov, V. Vodovozov, K. Augsburg, E. Petlenkov, Design of regenerative anti-lock braking system controller for 4-in-wheel-motor drive electric vehicle with road surface estimation. Int. J. Automotive Technol. 19, 727–742 (2018)CrossRef
17.
go back to reference V. Ricciardi, D. Savitski, K. Augsburg, V. Ivanov, Estimation of brake friction coefficient for blending function of base braking control. SAE Int. J. Passeng. Cars – Mech. Syst. 10, 774–785 (2017)CrossRef V. Ricciardi, D. Savitski, K. Augsburg, V. Ivanov, Estimation of brake friction coefficient for blending function of base braking control. SAE Int. J. Passeng. Cars – Mech. Syst. 10, 774–785 (2017)CrossRef
Metadata
Title
Blended Antilock Braking System Control Method for All-Wheel Drive Electric Sport Utility Vehicle
Authors
Andrei Aksjonov, Ph.D.
Valery Vodovozov
Klaus Augsburg
Eduard Petlenkov
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-37161-6_17

Premium Partner