Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2016

Open Access 01-12-2016 | Research

Blow-up and global existence for nonlinear reaction-diffusion equations under Neumann boundary conditions

Author: Juntang Ding

Published in: Journal of Inequalities and Applications | Issue 1/2016

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

In this paper, we study the blow-up and global solutions of the following nonlinear reaction-diffusion equations under Neumann boundary conditions:
$$\left \{ \textstyle\begin{array}{l@{\quad}l} (g(u) )_{t} =\nabla\cdot(a(u)b(x)\nabla u)+f(x,u) &\mbox{in } D\times(0,T), \\ \frac{\partial u}{\partial n}=0 &\mbox{on } \partial D\times(0,T), \\ u(x,0)=u_{0}(x)>0 & \mbox{in } \overline{D}, \end{array}\displaystyle \right . $$
where \(D\subset\mathbb{R}^{N}\) (\(N\geq2\)) is a bounded domain with smooth boundary ∂D. By constructing auxiliary functions and using maximum principles and a first-order differential inequality technique, sufficient conditions for the existence of the blow-up solution, an upper bound for the ‘blow-up time’, an upper estimate of the ‘blow-up rate’, sufficient conditions for the existence of global solution, and an upper estimate of the global solution are specified under some appropriate assumptions on the functions a, b, f, g, and initial value \(u_{0}\).
Notes

Competing interests

The author declares that he has no competing interests.

1 Introduction

In this paper, we study the blow-up and global solutions for the following nonlinear reaction-diffusion equations under Neumann boundary conditions:
$$ \left \{ \textstyle\begin{array}{l@{\quad}l} (g(u) )_{t} =\nabla\cdot(a(u)b(x)\nabla u)+f(x,u) & \mbox{in } D\times(0,T), \\ \frac{\partial u}{\partial n}=0 &\mbox{on } \partial D\times(0,T), \\ u(x,0)=u_{0}(x)>0 & \mbox{in } \overline{D}, \end{array}\displaystyle \right . $$
(1.1)
where \(D\subset\mathbb{R}^{N}\) (\(N\geq2\)) is a bounded domain with smooth boundary ∂D, \(\partial/\partial n\) represents the outward normal derivative on ∂D, \(u_{0}\) is the initial value, T is the maximal existence time of u, and is the closure of D. In order to study the blow-up problem of (1.1) by using maximum principles, we make the following assumptions about the functions a, b, f, g, and \(u_{0}\). Set \(\mathbb{R}^{+}:=(0,+\infty)\). Throughout the paper, we assume that \(a(s)\) is a positive \(C^{2}(\mathbb{R}^{+})\) function, \(b(x)\) is a positive \(C^{1}(\overline{D})\) function, \(f(x,s)\) is a nonnegative \(C^{1}(D\times\mathbb{R}^{+})\) function, \(g(s)\) is a \(C^{3}(\mathbb{R}^{+})\) function, \(g'(s)>0\) for any \(s\in\mathbb{R}^{+}\), and \(u_{0}(x)\) is a positive \(C^{2}(\overline{D})\) function. Under these assumptions, the classical parabolic equation theory ensures that there exists a unique classical solution \(u(x,t)\) for problem (1.1) with some \(T>0\) and the solution is positive over \(\overline{D}\times[0,T)\). Moreover, by regularity theorem [1], \(u\in C^{3}(D\times(0,T))\cap C^{2}(\overline{D}\times[0,T))\).
During the past decades, the problems of the blow-up and global solutions for nonlinear reaction-diffusion equations have received considerable attention. The contributions in the filed can be found in [28] and the references therein. Many authors discussed the blow-up and global solutions for nonlinear reaction-diffusion equations under Neumann boundary conditions and obtained a lot of interesting results; we refer the reader to [919]. Some particular cases of (1.1) have been investigated already. Lair and Oxley [20] studied the following problem:
$$ \left \{ \textstyle\begin{array}{l@{\quad}l} u_{t}=\nabla\cdot(a(u)\nabla u)+f(u) & \mbox{in }D\times(0,T), \\ \frac{\partial u}{\partial n}=0 & \mbox{on } \partial D\times (0,T), \\ u(x,0)=u_{0}(x)>0 & \mbox{in } \overline{D}, \end{array}\displaystyle \right . $$
(1.2)
where D is a bounded domain of \(\mathbb{R}^{N}\) (\(N\geq2\)) with smooth boundary ∂D. Necessary and sufficient conditions characterized by functions a and f were given for the existence of blow-up and global solutions. Zhang [21] discussed the following problem:
$$ \left \{ \textstyle\begin{array}{l@{\quad}l} (g(u))_{t}=\Delta u+f(u) & \mbox{in }D\times(0,T), \\ \frac{\partial u}{\partial n}=0 & \mbox{on } \partial D\times (0,T), \\ u(x,0)=u_{0}(x)>0 & \mbox{in } \overline{D}, \end{array}\displaystyle \right . $$
(1.3)
where D is a bounded domain of \(\mathbb{R}^{N}\) (\(N\geq2\)) with smooth boundary ∂D. Sufficient conditions were developed there for the existence of blow-up and global solutions. Ding and Guo [22] considered the following problem:
$$ \left \{ \textstyle\begin{array}{l@{\quad}l} (g(u))_{t}=\nabla\cdot(a(u)\nabla u)\Delta u+f(u) & \mbox{in }D\times(0,T), \\ \frac{\partial u}{\partial n}=0 & \mbox{on } \partial D\times (0,T), \\ u(x,0)=u_{0}(x)>0 & \mbox{in } \overline{D}, \end{array}\displaystyle \right . $$
(1.4)
where D is a bounded domain of \(\mathbb{R}^{N}\) (\(N\geq2\)) with smooth boundary ∂D. Sufficient conditions were given there for the existence of blow-up and global solutions. Meanwhile, an upper bound of the ‘blow-up time’, an upper estimate of ‘blow-up rate’, and an upper estimate of the global solution were also obtained.
The object of this paper is the blow-up and global solutions for problem (1.1). Since the reaction function \(f(x,u)\) contains not only the concentration variable u but also the space variable x, it seems that the methods of [2022] are not applicable to problem (1.1). In this paper, we investigate problem (1.1) by constructing auxiliary functions completely different from those in [2022] and technically using maximum principles and a first-order differential inequality technique. We obtain some existence theorems for a blow-up solution, an upper bound of ‘blow-up time’, an upper estimate of ‘blow-up rate’, existence theorems for a global solution, and an upper estimate of the global solution. Our results can be considered as extensions and supplements of those obtained in [2022].
We proceed as follows. In Section 2 we study the blow-up solution of problem (1.1). Section 3 is devoted to the global solution of (1.1). A few examples are presented in Section 4 to illustrate the applications of the abstract results.

2 Blow-up solution

Our main result for the blow-up solution is stated in the following theorem.
Theorem 2.1
Let u be a solution of problem (1.1). Assume that the following conditions (i)-(iv) are satisfied:
(i)
for any \(s\in\mathbb{R}^{+}\),
$$ \biggl(\frac{a(s)}{g'(s)} \biggr)'\geq0,\quad \biggl[ \frac{1}{a(s)} \biggl(\frac{a(s)}{g'(s)} \biggr)' + \frac{1}{g'(s)} \biggr]'+ \biggl[\frac{1}{a(s)} \biggl( \frac {a(s)}{g'(s)} \biggr)' +\frac{1}{g'(s)} \biggr]\geq0; $$
(2.1)
 
(ii)
for any \((x,s)\in D\times\mathbb{R}^{+}\),
$$ \biggl(\frac{f(x,s)g'(s)}{a(s)} \biggr)_{s} -\frac{f(x,s)g'(s)}{a(s)} \geq0; $$
(2.2)
 
(iii)
$$ \int^{+\infty}_{M_{0}}\frac{g'(s)}{{\mathrm{e}}^{s}}\, {\mathrm{d}}s< + \infty,\qquad M_{0}:=\max_{\overline{D}}u_{0}(x); $$
(2.3)
 
(iv)
$$ \beta:=\min_{\overline{D}} \frac{\nabla\cdot (a(u_{0})b(x)\nabla u_{0} )+f(x,u_{0})}{{\mathrm{e}}^{u_{0}}}>0. $$
(2.4)
 
Then the solution u to problem (1.1) must blow up in a finite T, and
$$\begin{aligned}& T\leq\frac{1}{\beta} \int^{+\infty}_{M_{0}}\frac{g'(s)}{{\mathrm{e}}^{s}}\, {\mathrm{d}}s, \end{aligned}$$
(2.5)
$$\begin{aligned}& u(x,t)\leq H^{-1} \bigl(\beta(T-t) \bigr), \quad \forall (x,t)\in {\overline{D}}\times[0,T), \end{aligned}$$
(2.6)
where
$$ H(z):= \int^{+\infty}_{z}\frac{g'(s)}{{\mathrm{e}}^{s}}\,{\mathrm{d}}s, \quad z>0, $$
(2.7)
and \(H^{-1}\) is the inverse function of H.
Proof
Consider the auxiliary function
$$ \Psi(x,t):=g'(u)u_{t}-\beta{ \mathrm{e}}^{u}. $$
(2.8)
For brevity of notation, we write g in place of \(g(u)\), suppressing the symbol u. We find that
$$\begin{aligned}& \nabla\Psi=g''u_{t}\nabla u+g'\nabla u_{t}-\beta{\mathrm{e}}^{u}\nabla u, \end{aligned}$$
(2.9)
$$\begin{aligned}& \Delta\Psi=g'''u_{t}| \nabla u|^{2}+2g''\nabla u\cdot\nabla u_{t}+g''u_{t}\Delta u +g'\Delta u_{t}-\beta{\mathrm{e}}^{u}|\nabla u|^{2}-\beta{\mathrm{e}}^{u}\Delta u, \end{aligned}$$
(2.10)
and
$$\begin{aligned} \Psi_{t} =&g''(u_{t})^{2}+g'(u_{t})_{t}- \beta{\mathrm{e}}^{u}u_{t} \\ =&g''(u_{t})^{2}+g' \biggl(\frac{ab}{g'}\Delta u+\frac{a'b}{g'}|\nabla u|^{2} + \frac{a}{g'}\nabla b\cdot\nabla u+\frac{f}{g'} \biggr)_{t}- \beta{\mathrm{e}}^{u}u_{t} \\ =&g''(u_{t})^{2}+ \biggl(a'b-\frac{abg''}{g'} \biggr)u_{t}\Delta u +ab \Delta u_{t}+ \biggl(a''b-\frac{a'bg''}{g'} \biggr)u_{t}|\nabla u|^{2} \\ &{}+2a'b (\nabla u\cdot\nabla u_{t} ) + \biggl(a'- \frac{ag''}{g'} \biggr)u_{t} (\nabla b\cdot\nabla u )+a (\nabla b \cdot\nabla u_{t} ) \\ &{} + \biggl(f_{u}-\frac{fg''}{g'}-\beta{\mathrm{e}}^{u} \biggr)u_{t}. \end{aligned}$$
(2.11)
It follows from (2.10) and (2.11) that
$$\begin{aligned} \frac{ab}{g'}\Delta\Psi-\Psi_{t} =& \biggl( \frac{abg'''}{g'}+\frac{a'bg''}{g'}-a''b \biggr)u_{t}|\nabla u|^{2} + \biggl(2\frac{abg''}{g'}-2a'b \biggr) (\nabla u\cdot\nabla u_{t} ) \\ &{}+ \biggl(2\frac{abg''}{g'}-a'b \biggr)u_{t}\Delta u -\beta\frac{ab{\mathrm{e}}^{u}}{g'}|\nabla u|^{2} -\beta\frac{ab{\mathrm{e}}^{u}}{g'}\Delta u-g''(u_{t})^{2} \\ &{}+ \biggl(\frac{ag''}{g'}-a' \biggr)u_{t} (\nabla b \cdot\nabla u ) -a (\nabla b\cdot\nabla u_{t} ) + \biggl( \frac{fg''}{g'}-f_{u}+\beta{\mathrm{e}}^{u} \biggr)u_{t}. \end{aligned}$$
(2.12)
By (1.1) we have
$$ \Delta u=\frac{g'}{ab}u_{t}-\frac{a'}{a}| \nabla u|^{2}-\frac{1}{b} (\nabla b\cdot\nabla u )- \frac{f}{ab}. $$
(2.13)
Substituting (2.13) into (2.12), we get
$$\begin{aligned} \frac{ab}{g'}\Delta\Psi-\Psi_{t} =& \biggl( \frac{abg'''}{g'}-\frac{a'bg''}{g'}-a''b+ \frac {(a')^{2}b}{a} \biggr)u_{t}|\nabla u|^{2} + \biggl(2 \frac{abg''}{g'}-2a'b \biggr) (\nabla u\cdot\nabla u_{t} ) \\ &{}-\frac{(g')^{2}}{a} \biggl(\frac{a}{g'} \biggr)'(u_{t})^{2} -\frac{ag''}{g'}u_{t} (\nabla b\cdot\nabla u ) + \biggl( \frac{a'f}{a}-\frac{fg''}{g'}-f_{u} \biggr)u_{t} \\ &{}+ \biggl(\beta\frac{a'b{\mathrm{e}}^{u}}{g'}-\beta\frac{ab{\mathrm{e}}^{u}}{g'} \biggr)|\nabla u|^{2} +\beta\frac{a{\mathrm{e}}^{u}}{g'} (\nabla b\cdot\nabla u ) \\ &{}+\beta \frac{f{\mathrm{e}}^{u}}{g'}-a (\nabla b\cdot\nabla u_{t} ). \end{aligned}$$
(2.14)
In view of (2.9), we have
$$ \nabla u_{t}=\frac{1}{g'}\nabla\Psi- \frac{g''}{g'}u_{t}\nabla u+\beta \frac{{\mathrm{e}}^{u}}{g'}\nabla u. $$
(2.15)
Substitution of (2.15) into (2.14) results in
$$\begin{aligned}& \frac{ab}{g'}\Delta\Psi+ \biggl[2b \biggl(\frac{a}{g'} \biggr)'\nabla u +\frac{a}{g'}\nabla b \biggr]\cdot\nabla\Psi- \Psi_{t} \\& \quad = \biggl(\frac{abg'''}{g'}+\frac{a'bg''}{g'}-a''b+ \frac{(a')^{2}b}{a} -2\frac{ab(g'')^{2}}{(g')^{2}} \biggr)u_{t}|\nabla u|^{2} \\& \qquad {} + \biggl(2\beta\frac{abg''{\mathrm{e}}^{u}}{(g')^{2}}-\beta\frac{a'b{\mathrm{e}}^{u}}{g'} -\beta \frac{ab{\mathrm{e}}^{u}}{g'} \biggr)|\nabla u|^{2} -\frac{(g')^{2}}{a} \biggl( \frac{a}{g'} \biggr)'(u_{t})^{2} \\& \qquad {} + \biggl(\frac{a'f}{a}-\frac{fg''}{g'}-f_{u} \biggr)u_{t} +\beta\frac{f{\mathrm{e}}^{u}}{g'}. \end{aligned}$$
(2.16)
With (2.8), we have
$$ u_{t}=\frac{1}{g'}\Psi+\beta\frac{{\mathrm{e}}^{u}}{g'}. $$
(2.17)
Substituting (2.17) into (2.16), we obtain
$$\begin{aligned}& \frac{ab}{g'}\Delta\Psi+ \biggl[2b \biggl(\frac{a}{g'} \biggr)'\nabla u +\frac{a}{g'}\nabla b \biggr]\cdot\nabla\Psi \\& \qquad {} + \biggl\{ ab \biggl[\frac{1}{a} \biggl(\frac{a}{g'} \biggr)' \biggr]'|\nabla u|^{2} + \frac{a}{(g')^{2}} \biggl(\frac{fg'}{a} \biggr)_{u} \biggr\} \Psi- \Psi_{t} \\& \quad = -\beta ab{\mathrm{e}}^{u} \biggl\{ \biggl[\frac{1}{a} \biggl(\frac {a}{g'} \biggr)'+\frac{1}{g'} \biggr]' + \biggl[\frac{1}{a} \biggl(\frac{a}{g'} \biggr)'+\frac{1}{g'} \biggr] \biggr\} |\nabla u|^{2} -\frac{(g')^{2}}{a} \biggl(\frac{a}{g'} \biggr)'(u_{t})^{2} \\& \qquad {}-\beta\frac{a{\mathrm{e}}^{u}}{(g')^{2}} \biggl[ \biggl(\frac{fg'}{a} \biggr)_{u}-\frac{fg'}{a} \biggr]. \end{aligned}$$
(2.18)
By assumptions (2.1) and (2.2) the right-hand side of (2.18) is nonpositive, that is,
$$\begin{aligned}& \frac{ab}{g'}\Delta\Psi+ \biggl[2b \biggl(\frac{a}{g'} \biggr)'\nabla u +\frac{a}{g'}\nabla b \biggr]\cdot\nabla\Psi \\& \quad {}+ \biggl\{ ab \biggl[\frac{1}{a} \biggl(\frac{a}{g'} \biggr)' \biggr]'|\nabla u|^{2} + \frac{a}{(g')^{2}} \biggl(\frac{fg'}{a} \biggr)_{u} \biggr\} \Psi- \Psi _{t}\leq0 \quad \mbox{in } D\times(0,T). \end{aligned}$$
(2.19)
Now by (2.4) we have
$$\begin{aligned} \min_{\overline{D}}\Psi(x,0) =&\min _{\overline{D}} \bigl\{ g'(u_{0}) (u_{0})_{t}-\beta{\mathrm{e}}^{u_{0}} \bigr\} \\ =&\min_{\overline{D}} \bigl\{ \nabla\cdot \bigl(a(u_{0})b(x) \nabla u_{0} \bigr)+f(x,u_{0})-\beta{\mathrm{e}}^{u_{0}} \bigr\} \\ =&\min_{\overline{D}} \biggl\{ {\mathrm{e}}^{u_{0}} \biggl[ \frac{\nabla\cdot(a(u_{0})b(x)\nabla u_{0})+f(x,u_{0})}{{\mathrm{e}}^{u_{0}}}-\beta \biggr] \biggr\} =0. \end{aligned}$$
(2.20)
It follows from (1.1) that
$$ \frac{\partial\Psi}{\partial n}=g''u_{t} \frac{\partial u}{\partial n} +g'\frac{\partial u_{t}}{\partial n} -\beta{\mathrm{e}}^{u} \frac{\partial u}{\partial n} =g' \biggl(\frac{\partial u}{\partial n} \biggr)_{t}=0 \quad \mbox{on } \partial D\times(0,T). $$
(2.21)
The assumptions concerning the functions a, b, f, g, and \(u_{0}\) in Section 1 imply that we can use maximum principles to (2.19)-(2.21). Combining (2.19)-(2.21) and applying maximum principles [23], it follows that the minimum of Ψ in \(\overline{D}\times[0,T)\) is zero. Thus, we have
$$\Psi\geq0 \quad \mbox{in } \overline{D}\times[0,T), $$
that is, the differential inequality
$$ \frac{g'(u)}{{\mathrm{e}}^{u}}u_{t}\geq\beta. $$
(2.22)
Suppose that \(x_{0}\in\overline{D}\) and \(u_{0}(x_{0})=M_{0}\). At the \(x_{0}\), integrate (2.22) over \([0,t]\) to get
$$ \int^{t}_{0}\frac{g'(u)}{{\mathrm{e}}^{u}}u_{t}\,{ \mathrm{d}}t = \int^{u(x_{0},t)}_{M_{0}}\frac{g'(s)}{{\mathrm{e}}^{s}}\,{\mathrm{d}}s\geq \beta t, $$
(2.23)
which implies that u must blow up in finite time. Actually, if u is a global solution of (1.1), then for any \(t>0\), it follows from (2.23) that
$$ \int^{+\infty}_{M_{0}}\frac{g'(s)}{{\mathrm{e}}^{s}}\,{\mathrm{d}}s \geq \int^{u(x_{0},t)}_{M_{0}}\frac{g'(s)}{{\mathrm{e}}^{s}}\,{\mathrm{d}}s \geq \beta t. $$
(2.24)
Letting \(t\rightarrow+\infty\) in (2.24) yields
$$\int^{+\infty}_{M_{0}}\frac{g'(s)}{{\mathrm{e}}^{s}}\,{\mathrm{d}}s=+ \infty, $$
which contradicts with assumption (2.3). This shows that u must blow up in a finite time \(t=T\). Furthermore, letting \(t\rightarrow T\) in (2.23), we have
$$T\leq\frac{1}{\beta} \int^{+\infty}_{M_{0}}\frac{g'(s)}{{\mathrm{e}}^{s}}\,{\mathrm{d}}s. $$
Integrating inequality (2.22) over \([t,s]\) (\(0< t< s< T\)) yields, for each fixed x, that
$$\begin{aligned} H \bigl(u(x,t) \bigr) \geq& H \bigl(u(x,t) \bigr) -H \bigl(u(x,s) \bigr) = \int^{+\infty}_{u(x,t)}\frac{g'(s)}{{\mathrm{e}}^{s}}\,{\mathrm{d}}s- \int ^{+\infty}_{u(x,s)}\frac{g'(s)}{{\mathrm{e}}^{s}}\,{\mathrm{d}}s \\ =& \int^{u(x,s)}_{u(x,t)}\frac{g'(s)}{{\mathrm{e}}^{s}}\,{\mathrm{d}}s= \int^{s}_{t}\frac {g'(u)}{{\mathrm{e}}^{u}}u_{t}\,{ \mathrm{d}}t\geq\beta(s-t). \end{aligned}$$
Passing to the limit as \(s\rightarrow T^{-}\) gives
$$H\bigl(u(x,t)\bigr)\geq\beta(T-t). $$
Since H is a decreasing function, we have
$$u(x,t)\leq H^{-1} \bigl(\beta(T-t) \bigr). $$
The proof is complete. □

3 Global solution

The following theorem is the main result for the global solution.
Theorem 3.1
Let u be a solution of problem (1.1). Assume that the following conditions (i)-(iv) are satisfied:
(i)
for any \(s\in\mathbb{R}^{+}\),
$$ \biggl(\frac{a(s)}{g'(s)} \biggr)'\leq0,\quad \biggl[ \frac{1}{a(s)} \biggl(\frac{a(s)}{g'(s)} \biggr)' - \frac{1}{g'(s)} \biggr]'- \biggl[\frac{1}{a(s)} \biggl( \frac {a(s)}{g'(s)} \biggr)' -\frac{1}{g'(s)} \biggr]\leq0; $$
(3.1)
 
(ii)
for any \((x,s)\in D\times\mathbb{R}^{+}\),
$$ \biggl(\frac{f(x,s)g'(s)}{a(s)} \biggr)_{s} +\frac{f(x,s)g'(s)}{a(s)} \leq0; $$
(3.2)
 
(iii)
$$ \int^{+\infty}_{m_{0}}\frac{g'(s)}{{\mathrm{e}}^{-s}}\,{\mathrm{d}}s=+ \infty,\qquad m_{0}:=\min_{\overline{D}}u_{0}(x); $$
(3.3)
 
(iv)
$$ \alpha:=\max_{\overline{D}} \frac{\nabla\cdot (a(u_{0})b(x)\nabla u_{0} )+f(x,u_{0})}{{\mathrm{e}}^{-u_{0}}}>0. $$
(3.4)
 
Then the solution u of (1.1) must be a global solution, and
$$ u(x,t)\leq G^{-1} \bigl(\alpha t+G\bigl(u_{0}(x,t) \bigr) \bigr), \quad \forall (x,t)\in\overline{D}\times\overline{\mathbb{R}}^{+}, $$
(3.5)
where
$$ G(z):= \int^{z}_{m_{0}}\frac{g'(s)}{{\mathrm{e}}^{-s}}\,{\mathrm{d}}s, \quad z\geq m_{0}, $$
(3.6)
and \(G^{-1}\) is the inverse function of G.
Proof
Construct the auxiliary function
$$ \Phi(x,t):=g'(u)u_{t}-\alpha{ \mathrm{e}}^{-u}. $$
(3.7)
By using the same reasoning process with that of (2.9)-(2.18), we have
$$\begin{aligned}& \frac{ab}{g'}\Delta\Phi+ \biggl[2b \biggl(\frac{a}{g'} \biggr)'\nabla u +\frac{a}{g'}\nabla b \biggr]\cdot\nabla\Phi \\& \qquad {} + \biggl\{ ab \biggl[\frac{1}{a} \biggl(\frac{a}{g'} \biggr)' \biggr]'|\nabla u|^{2} - \frac{a}{(g')^{2}} \biggl(\frac{fg'}{a} \biggr)_{u} \biggr\} \Phi- \Phi_{t} \\& \quad = -\alpha ab{\mathrm{e}}^{-u} \biggl\{ \biggl[\frac{1}{a} \biggl(\frac {a}{g'} \biggr)'-\frac{1}{g'} \biggr]' - \biggl[\frac{1}{a} \biggl(\frac{a}{g'} \biggr)'-\frac{1}{g'} \biggr] \biggr\} |\nabla u|^{2} -\frac{(g')^{2}}{a} \biggl(\frac{a}{g'} \biggr)'(u_{t})^{2} \\& \qquad {} -\alpha\frac{a{\mathrm{e}}^{-u}}{(g')^{2}} \biggl[ \biggl(\frac{fg'}{a} \biggr)_{u}+\frac{fg'}{a} \biggr]. \end{aligned}$$
(3.8)
From assumptions (3.1) and (3.2) we see that the right-hand side of (3.8) is nonnegative, that is,
$$\begin{aligned}& \frac{ab}{g'}\Delta\Phi+ \biggl[2b \biggl(\frac{a}{g'} \biggr)'\nabla u +\frac{a}{g'}\nabla b \biggr]\cdot\nabla\Phi \\& \quad {}+ \biggl\{ ab \biggl[\frac{1}{a} \biggl(\frac{a}{g'} \biggr)' \biggr]'|\nabla u|^{2} - \frac{a}{(g')^{2}} \biggl(\frac{fg'}{a} \biggr)_{u} \biggr\} \Phi- \Phi_{t} \geq0 \quad \mbox{in } D\times(0,T). \end{aligned}$$
(3.9)
By (3.4) we have
$$\begin{aligned} \max_{\overline{D}}\Phi(x,0) =& \max _{\overline{D}} \bigl\{ g'(u_{0}) (u_{0})_{t}-\alpha{\mathrm{e}}^{-u_{0}} \bigr\} \\ =&\max_{\overline{D}} \bigl\{ \nabla\cdot \bigl(a(u_{0})b(x) \nabla u_{0} \bigr)+f(x,u_{0})-\alpha{\mathrm{e}}^{-u_{0}} \bigr\} \\ =&\max_{\overline{D}} \biggl\{ {\mathrm{e}}^{-u_{0}} \biggl[ \frac{\nabla\cdot(a(u_{0})b(x)\nabla u_{0})+f(x,u_{0})}{{\mathrm{e}}^{-u_{0}}}-\alpha \biggr] \biggr\} =0. \end{aligned}$$
(3.10)
Repeating the arguments for (2.21), we have
$$ \frac{\partial\Phi}{\partial n}=0 \quad \mbox{on } \partial D\times(0,T). $$
(3.11)
Combining (3.9)-(3.11) and applying the maximum principles again, we get that the maximum of Φ in \(\overline{D}\times[0,T)\) is zero. Hence, we have
$$\Phi\leq0 \quad \mbox{in } \overline{D}\times[0,T), $$
that is, the differential inequality
$$ \frac{g'(u)}{{\mathrm{e}}^{-u}}u_{t}\leq\alpha. $$
(3.12)
For each fixed \(x\in\overline{D}\), integrate (3.12) over \([0,t]\) to produce
$$ \int^{t}_{0}\frac{g'(u)}{{\mathrm{e}}^{-u}}u_{t}\,{ \mathrm{d}}t = \int^{u(x,t)}_{u_{0}(x)} \frac{g'(s)}{{\mathrm{e}}^{-s}}\,{\mathrm{d}}s \leq \alpha t, $$
(3.13)
which shows that u must be a global solution. In fact, suppose that u blows up at finite time T, that is,
$$\lim_{t\rightarrow T^{-}}u(x,t)=+\infty. $$
Passing to the limit as \(t\rightarrow T^{-}\) in (3.13) gives
$$\int^{+\infty}_{u_{0}(x)}\frac{g'(s)}{{\mathrm{e}}^{-s}}\,{\mathrm{d}}s\leq \alpha T $$
and
$$\int^{+\infty}_{m_{0}} \frac{g'(s)}{{\mathrm{e}}^{-s}}\,{\mathrm{d}}s = \int^{u_{0}(x)}_{m_{0}}\frac{g'(s)}{{\mathrm{e}}^{-s}}\,{\mathrm{d}}s + \int^{+\infty}_{u_{0}(x)}\frac{g'(s)}{{\mathrm{e}}^{-s}}\,{\mathrm{d}}s \leq \int^{u_{0}(x)}_{m_{0}}\frac{g'(s)}{{\mathrm{e}}^{-s}}\,{\mathrm{d}}s+ \alpha T< +\infty, $$
which is a contradiction. This shows that u is global. Moreover, (3.13) implies that
$$\int^{u(x,t)}_{u_{0}(x)}\frac{g'(s)}{{\mathrm{e}}^{-s}}\,{\mathrm{d}}s = \int_{m_{0}}^{u(x,t)}\frac{g'(s)}{{\mathrm{e}}^{-s}}\,{\mathrm{d}}s - \int^{u_{0}(x)}_{m_{0}}\frac{g'(s)}{{\mathrm{e}}^{-s}}\,{\mathrm{d}}s =G \bigl(u(x,t) \bigr)-G\bigl(u_{0}(x)\bigr) \leq\alpha t. $$
Since G is an increasing function, we have
$$u(x,t)\leq G^{-1} \bigl(\alpha t+G\bigl(u_{0}(x)\bigr) \bigr). $$
The proof is complete. □

4 Applications

When \(g(u)\equiv u\), \(b(x)\equiv1\), and \(f(x,u)\equiv f(u)\), problem (1.1) is problem (1.2) studied by Lair and Oxley [20]. When \(a(u)\equiv1\), \(b(x)\equiv1\), and \(f(x,u)\equiv f(u)\), problem (1.1) is problem (1.3) discussed by Zhang [21]. When \(b(x)\equiv1\) and \(f(x,u)\equiv f(u)\), problem (1.1) is problem (1.4) considered by Ding and Guo [22]. In these three cases, the conclusions of Theorems 2.1 and 3.1 still hold. In this sense, our results extend and supplement the results of [2022].
In what follows, we present several examples to demonstrate applications of Theorems 2.1 and 3.1.
Example 4.1
Let u be a solution of the following problem:
$$\left \{ \textstyle\begin{array}{l@{\quad}l} (2{\mathrm{e}}^{\frac{u}{2}}+u )_{t} =\nabla\cdot ( (1+{\mathrm{e}}^{\frac{u}{2}} ) (1+\| x\|^{2} )\nabla u ) +7{\mathrm{e}}^{u}-\|x\|^{2} &\mbox{in }D\times(0,T), \\ \frac{\partial u}{\partial n}=0 &\mbox{on } \partial D\times(0,T), \\ u(x,0)=1+ (1-\|x\|^{2} )^{2} & \mbox{in } \overline{D}, \end{array}\displaystyle \right . $$
where \(D= \{x=(x_{1},x_{2},x_{3}) \mid \|x\| ^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}<1 \}\) is the unit ball of \(\mathbb{R}^{3}\). Now we have
$$\begin{aligned}& g(u)=2{\mathrm{e}}^{\frac{u}{2}}+u, \qquad a(u)=1+{\mathrm{e}}^{\frac{u}{2}}, \qquad b(x)=1+\|x\|^{2}, \\& f(x,u)=7{\mathrm{e}}^{u}-\|x\|^{2}, \qquad u_{0}(x)=1+ \bigl(1-\|x\|^{2} \bigr)^{2}. \end{aligned}$$
In order to determine the constant β, we assume that
$$s=\|x\|^{2}. $$
Then \(0\leq s\leq1\) and
$$\begin{aligned} \beta =&\min_{\overline{D}} \frac{\nabla\cdot (a(u_{0})b(x)\nabla u_{0} )+f(x,u_{0})}{{\mathrm{e}}^{u_{0}}} \\ =&\min_{\overline{D}} \bigl\{ \bigl({\mathrm{e}}^{-1-(1-\|x\|^{2})^{2}}+{ \mathrm{e}}^{-\frac{1}{2}-\frac{1}{2}(1-\|x\|^{2})^{2}} \bigr) \bigl(-12+28\|x\|^{2} \bigr) \\ &{}+8{\mathrm{e}}^{-\frac{1}{2}-\frac{1}{2} (1-\|x\| ^{2} )^{2}}\|x\|^{2} \bigl(1+\|x\|^{2} \bigr) \bigl(1-\|x\|^{2} \bigr)^{2} +7-\|x\|^{2}{ \mathrm{e}}^{-1- (1-\|x\|^{2} )^{2}}\bigr\} \\ =&\min_{0\leq s\leq1} \bigl\{ \bigl({\mathrm{e}}^{-1-(1-s)^{2}}+{ \mathrm{e}}^{-\frac{1}{2}-\frac{1}{2}(1-s)^{2}} \bigr) (-12+28s) \\ &{}+8{\mathrm{e}}^{-\frac{1}{2}-\frac{1}{2}(1-s)^{2}}s(1+s) (1-s)^{2}+7-s{ \mathrm{e}}^{-1-(1-s)^{2}}\bigr\} \\ =&0.9614. \end{aligned}$$
It is easy to check that (2.1)-(2.3) hold. By Theorem 2.1, u must blow up in a finite time T, and
$$\begin{aligned}& T\leq\frac{1}{\beta} \int^{+\infty}_{M_{0}}\frac{g'(s)}{{\mathrm{e}}^{s}}\,{\mathrm{d}}s = \frac{1}{0.9614} \int^{+\infty}_{1}\frac{{\mathrm{e}}^{\frac {s}{2}}+1}{{\mathrm{e}}^{s}}\,{\mathrm{d}}s =1.4025, \\& u(x,t)\leq H^{-1} \bigl(\beta(T-t) \bigr) =\ln\frac{1}{ (\sqrt{1+0.9614(T-t)}-1 )^{2}}. \end{aligned}$$
Example 4.2
Let u be a solution of the following problem:
$$\left \{ \textstyle\begin{array}{l@{\quad}l} (\ln ({\mathrm{e}}^{u}-1 )-u )_{t} =\nabla\cdot (\frac{1}{{\mathrm{e}}^{u}-1} (1+\|x\|^{2} )\nabla u ) +{\mathrm{e}}^{-u} (1+\|x\|^{2} ) &\mbox{in }D\times(0,T), \\ \frac{\partial u}{\partial n}=0 &\mbox{on } \partial D\times(0,T), \\ u(x,0)=1+ (1-\|x\|^{2} )^{2} & \mbox{in } \overline{D}, \end{array}\displaystyle \right . $$
where \(D= \{x=(x_{1},x_{2},x_{3}) \mid \|x\| ^{2}=x_{2}^{2}+x_{2}^{2}+x_{3}^{2}<1 \}\) is the unit ball of \(\mathbb{R}^{3}\). Now we have
$$\begin{aligned}& g(u)=\ln \bigl({\mathrm{e}}^{u}-1 \bigr)-u, \qquad a(u)= \frac{1}{{\mathrm{e}}^{u}-1}, \qquad b(x)=1+\|x\|^{2}, \\& f(x,u)={\mathrm{e}}^{-u} \bigl(1+\|x\|^{2} \bigr), \qquad u_{0}(x)=1+ \bigl(1-\| x\|^{2} \bigr)^{2}. \end{aligned}$$
By setting
$$s=\|x\|^{2}, $$
we have \(0\leq s\leq1\) and
$$\begin{aligned} \alpha =&\min_{\overline{D}} \frac{\nabla\cdot (a(u_{0})b(x)\nabla u_{0} )+f(x,u_{0})}{{\mathrm{e}}^{-u_{0}}} \\ =&\min_{\overline{D}} \biggl\{ \frac{1}{ ({\mathrm{e}}^{1+(1-\|x\|^{2})^{2}}-1 )^{2}} \bigl[ \bigl(-12+28 \|x\|^{2} \bigr){\mathrm{e}}^{1+ (1-\|x\|^{2} )^{2}} \bigl({\mathrm{e}}^{1+ (1-\|x\|^{2} )^{2}}-1 \bigr) \\ &{}-16\|x\|^{2} \bigl(1+\|x\|^{2} \bigr) \bigl(1-\|x \|^{2} \bigr)^{2}{\mathrm{e}}^{2+2 (1-\|x\|^{2} )^{2}} + \bigl(1+\|x \|^{2} \bigr) \bigl({\mathrm{e}}^{1+ (1-\|x\|^{2} )^{2}}-1 \bigr)^{2} \bigr]\biggr\} \\ =&\min_{0\leq s\leq1} \biggl\{ \frac{1}{ ({\mathrm{e}}^{1+(1-s)^{2}}-1 )^{2}} \bigl[ (-12+28s ){ \mathrm{e}}^{1+ (1-s )^{2}} \bigl({\mathrm{e}}^{1+ (1-s )^{2}}-1 \bigr) \\ &{}-16s (1+s ) (1-s )^{2}{\mathrm{e}}^{2+2 (1-s )^{2}} + (1+s ) \bigl({ \mathrm{e}}^{1+ (1-s )^{2}}-1 \bigr)^{2}\bigr]\biggr\} \\ =&27.3116. \end{aligned}$$
Again, it is easy to check that (3.1)-(3.3) hold. By Theorem 3.1, u must be a global solution, and
$$u(x,t)\leq G^{-1} \bigl(\alpha t+G\bigl(u_{0}(x)\bigr) \bigr) =\ln \bigl[1+{\mathrm{e}}^{27.3116t} \bigl({\mathrm{e}}^{1+ (1-\|x\|^{2} )^{2}}-1 \bigr) \bigr]. $$

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61473180 and 61174082).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The author declares that he has no competing interests.
Literature
1.
go back to reference Sperb, RP: Maximum Principles and Their Applications. Academic Press, New York (1981) MATH Sperb, RP: Maximum Principles and Their Applications. Academic Press, New York (1981) MATH
3.
4.
go back to reference Galaktionov, VA, Vázquez, JL: The problem of blow-up in nonlinear parabolic equations. Discrete Contin. Dyn. Syst. 8, 399-433 (2002) MathSciNetCrossRefMATH Galaktionov, VA, Vázquez, JL: The problem of blow-up in nonlinear parabolic equations. Discrete Contin. Dyn. Syst. 8, 399-433 (2002) MathSciNetCrossRefMATH
5.
go back to reference Quittner, P, Souplet, P: Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States. Birkhäuser Advanced Texts. Birkhäuser, Basel (2007) MATH Quittner, P, Souplet, P: Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States. Birkhäuser Advanced Texts. Birkhäuser, Basel (2007) MATH
6.
go back to reference Samarskii, AA, Galaktionov, VA, Kurdyumov, SP, Mikhailov, AP: Blow-up in Problems for Quasilinear Parabolic Equations. Nauka, Moscow (1987) (in Russian); English translation: de Gruyter, Berlin (1995) MATH Samarskii, AA, Galaktionov, VA, Kurdyumov, SP, Mikhailov, AP: Blow-up in Problems for Quasilinear Parabolic Equations. Nauka, Moscow (1987) (in Russian); English translation: de Gruyter, Berlin (1995) MATH
7.
go back to reference Zhang, LL: Blow-up of solutions for a class of nonlinear parabolic equations. Z. Anal. Anwend. 25, 479-486 (2006) MathSciNetMATH Zhang, LL: Blow-up of solutions for a class of nonlinear parabolic equations. Z. Anal. Anwend. 25, 479-486 (2006) MathSciNetMATH
8.
go back to reference Zhang, LL, Zhang, N, Li, LX: Blow-up solutions and global existence for a kind of quasilinear reaction-diffusion equations. Z. Anal. Anwend. 33, 247-258 (2014) MathSciNetCrossRefMATH Zhang, LL, Zhang, N, Li, LX: Blow-up solutions and global existence for a kind of quasilinear reaction-diffusion equations. Z. Anal. Anwend. 33, 247-258 (2014) MathSciNetCrossRefMATH
9.
10.
go back to reference Ding, JT: Global existence and blow-up for a class of nonlinear reaction diffusion problem. Bound. Value Probl. 2014, 168 (2014) CrossRefMATH Ding, JT: Global existence and blow-up for a class of nonlinear reaction diffusion problem. Bound. Value Probl. 2014, 168 (2014) CrossRefMATH
11.
go back to reference Ding, JT, Li, SJ: Blow-up and global solutions for nonlinear reaction-diffusion equations with Neumann boundary conditions. Nonlinear Anal. TMA 68, 507-514 (2008) MathSciNetCrossRefMATH Ding, JT, Li, SJ: Blow-up and global solutions for nonlinear reaction-diffusion equations with Neumann boundary conditions. Nonlinear Anal. TMA 68, 507-514 (2008) MathSciNetCrossRefMATH
12.
go back to reference Soufi, AE, Jazar, M, Monneau, R: A gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 24, 17-39 (2007) MathSciNetCrossRefMATH Soufi, AE, Jazar, M, Monneau, R: A gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 24, 17-39 (2007) MathSciNetCrossRefMATH
13.
go back to reference Gao, WJ, Han, YZ: Blow-up of a nonlocal semilinear parabolic equation with positive initial energy. Appl. Math. Lett. 24, 784-788 (2011) MathSciNetCrossRefMATH Gao, WJ, Han, YZ: Blow-up of a nonlocal semilinear parabolic equation with positive initial energy. Appl. Math. Lett. 24, 784-788 (2011) MathSciNetCrossRefMATH
14.
go back to reference Ishige, K, Yagisita, H: Blow-up problems for a semilinear heat equations with large diffusion. J. Differ. Equ. 212, 114-128 (2005) MathSciNetCrossRefMATH Ishige, K, Yagisita, H: Blow-up problems for a semilinear heat equations with large diffusion. J. Differ. Equ. 212, 114-128 (2005) MathSciNetCrossRefMATH
15.
go back to reference Jazar, M, Kiwan, R: Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25, 215-218 (2008) MathSciNetCrossRefMATH Jazar, M, Kiwan, R: Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25, 215-218 (2008) MathSciNetCrossRefMATH
16.
go back to reference Mizoguchi, N: Blow-up rate of solutions for a semilinear heat equation with Neumann boundary condition. J. Differ. Equ. 193, 212-238 (2003) MathSciNetCrossRefMATH Mizoguchi, N: Blow-up rate of solutions for a semilinear heat equation with Neumann boundary condition. J. Differ. Equ. 193, 212-238 (2003) MathSciNetCrossRefMATH
17.
go back to reference Payne, LE, Schaefer, PW: Lower bounds for blow-up time in parabolic problems under Neumann conditions. Appl. Anal. 85, 1301-1311 (2006) MathSciNetCrossRefMATH Payne, LE, Schaefer, PW: Lower bounds for blow-up time in parabolic problems under Neumann conditions. Appl. Anal. 85, 1301-1311 (2006) MathSciNetCrossRefMATH
18.
go back to reference Pérez-Llanos, M, Rossi, JD: Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term. Nonlinear Anal. TMA 70, 1629-1640 (2009) MathSciNetCrossRefMATH Pérez-Llanos, M, Rossi, JD: Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term. Nonlinear Anal. TMA 70, 1629-1640 (2009) MathSciNetCrossRefMATH
19.
go back to reference Qu, CY, Bai, XL, Zheng, SN: Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions. J. Math. Anal. Appl. 412, 326-333 (2014) MathSciNetCrossRefMATH Qu, CY, Bai, XL, Zheng, SN: Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions. J. Math. Anal. Appl. 412, 326-333 (2014) MathSciNetCrossRefMATH
20.
go back to reference Lair, AV, Oxley, ME: A necessary and sufficient condition for global existence for degenerate parabolic boundary value problem. J. Math. Anal. Appl. 221, 338-348 (1998) MathSciNetCrossRefMATH Lair, AV, Oxley, ME: A necessary and sufficient condition for global existence for degenerate parabolic boundary value problem. J. Math. Anal. Appl. 221, 338-348 (1998) MathSciNetCrossRefMATH
21.
22.
go back to reference Ding, JT, Guo, BZ: Blow-up and global existence for nonlinear parabolic equations with Neumann boundary conditions. Comput. Math. Appl. 60, 670-679 (2010) MathSciNetCrossRefMATH Ding, JT, Guo, BZ: Blow-up and global existence for nonlinear parabolic equations with Neumann boundary conditions. Comput. Math. Appl. 60, 670-679 (2010) MathSciNetCrossRefMATH
23.
go back to reference Protter, MH, Weinberger, HF: Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs (1967) MATH Protter, MH, Weinberger, HF: Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs (1967) MATH
Metadata
Title
Blow-up and global existence for nonlinear reaction-diffusion equations under Neumann boundary conditions
Author
Juntang Ding
Publication date
01-12-2016
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2016
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-1029-9

Other articles of this Issue 1/2016

Journal of Inequalities and Applications 1/2016 Go to the issue

Premium Partner