Skip to main content
Top
Published in: Journal of Intelligent Manufacturing 6/2023

30-04-2022

Boosted Harris Hawks gravitational force algorithm for global optimization and industrial engineering problems

Authors: Laith Abualigah, Ali Diabat, Davor Svetinovic, Mohamed Abd Elaziz

Published in: Journal of Intelligent Manufacturing | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Harris Hawks Optimization (HHO) is a newly proposed metaheuristic algorithm, which primarily works based on the cooperative system and chasing behavior of Harris’ hawks. In this paper, an augmented modification called HHMV is proposed to alleviate the main shortcomings of the conventional HHO that converges tardily and slowly to the optimal solution. Further, it is easy to trap in the local optimum when solving multi-dimensional optimization problems. In the proposed method, the conventional HHO is hybridized with Multi-verse Optimizer to improve its convergence speed, the exploratory searching mechanism through the beginning steps, and the exploitative searching mechanism in the final steps. The effectiveness of the proposed HHMV is deeply analyzed and investigated by using classical and CEC2019 benchmark functions with several dimensions size. Moreover, to prove the ability of the proposed HHMV method in solving real-world problems, five engineering design problems are tested. The experimental results confirmed that the exploration and exploitation search mechanisms of conventional HHO and its convergence speed have been significantly augmented. The HHMV method proposed in this paper is a promising version of HHO, and it obtained better results compared to other state-of-the-art methods published in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abasi, A. K., Khader, A. T., Al-Betar, M. A., Naim, S., Makhadmeh, S. N., & Alyasseri, Z. A. A. (2020). Link-based multi-verse optimizer for text documents clustering. Applied Soft Computing, 87, 106002.CrossRef Abasi, A. K., Khader, A. T., Al-Betar, M. A., Naim, S., Makhadmeh, S. N., & Alyasseri, Z. A. A. (2020). Link-based multi-verse optimizer for text documents clustering. Applied Soft Computing, 87, 106002.CrossRef
go back to reference Abd Elaziz, M., Elsheikh, A. H., Oliva, D., Abualigah, L., Lu, S., & Ewees, A. A. (2021). Advanced metaheuristic techniques for mechanical design problems. Archives of Computational Methods in Engineering, 29, 1–22. Abd Elaziz, M., Elsheikh, A. H., Oliva, D., Abualigah, L., Lu, S., & Ewees, A. A. (2021). Advanced metaheuristic techniques for mechanical design problems. Archives of Computational Methods in Engineering, 29, 1–22.
go back to reference Abd Elaziz, M., Ewees, A. A., Neggaz, N., Ibrahim, R. A., Al-qaness, M. A., & Lu, S. (2021). Cooperative meta-heuristic algorithms for global optimization problems. Expert Systems with Applications, 176, 114788.CrossRef Abd Elaziz, M., Ewees, A. A., Neggaz, N., Ibrahim, R. A., Al-qaness, M. A., & Lu, S. (2021). Cooperative meta-heuristic algorithms for global optimization problems. Expert Systems with Applications, 176, 114788.CrossRef
go back to reference Abd Elaziz, M., Oliva, D., Ewees, A. A., & Xiong, S. (2019). Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer. Expert Systems with Applications, 125, 112–129.CrossRef Abd Elaziz, M., Oliva, D., Ewees, A. A., & Xiong, S. (2019). Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer. Expert Systems with Applications, 125, 112–129.CrossRef
go back to reference Abd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.CrossRef Abd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.CrossRef
go back to reference Abualigah, L. (2020). Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Computing and Applications, 7, 1–24. Abualigah, L. (2020). Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Computing and Applications, 7, 1–24.
go back to reference Abualigah, L. (2020). Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications. Neural Computing and Applications, 32, 1–21. Abualigah, L. (2020). Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications. Neural Computing and Applications, 32, 1–21.
go back to reference Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2021). Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158.CrossRef Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2021). Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158.CrossRef
go back to reference Abualigah, L., & Alkhrabsheh, M. (2021). Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing. The Journal of Supercomputing, 78, 1–26. Abualigah, L., & Alkhrabsheh, M. (2021). Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing. The Journal of Supercomputing, 78, 1–26.
go back to reference Abualigah, L., & Diabat, A. (2021). Advances in sine cosine algorithm: A comprehensive survey. Artificial Intelligence Review, 54, 1–42.CrossRef Abualigah, L., & Diabat, A. (2021). Advances in sine cosine algorithm: A comprehensive survey. Artificial Intelligence Review, 54, 1–42.CrossRef
go back to reference Abualigah, L., Diabat, A., & Geem, Z. W. (2020). A comprehensive survey of the harmony search algorithm in clustering applications. Applied Sciences, 10(11), 3827.CrossRef Abualigah, L., Diabat, A., & Geem, Z. W. (2020). A comprehensive survey of the harmony search algorithm in clustering applications. Applied Sciences, 10(11), 3827.CrossRef
go back to reference Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. . H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609.CrossRef Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. . H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609.CrossRef
go back to reference Abualigah, L., & Dulaimi, A. J. (2021). A novel feature selection method for data mining tasks using hybrid sine cosine algorithm and genetic algorithm. Cluster Computing, 24, 1–16.CrossRef Abualigah, L., & Dulaimi, A. J. (2021). A novel feature selection method for data mining tasks using hybrid sine cosine algorithm and genetic algorithm. Cluster Computing, 24, 1–16.CrossRef
go back to reference Abualigah, L., Shehab, M., Alshinwan, M., Mirjalili, S., & Abd Elaziz, M. (2021). Ant lion optimizer: A comprehensive survey of its variants and applications. Archives of Computational Methods in Engineering, 28, 1397–1416.CrossRef Abualigah, L., Shehab, M., Alshinwan, M., Mirjalili, S., & Abd Elaziz, M. (2021). Ant lion optimizer: A comprehensive survey of its variants and applications. Archives of Computational Methods in Engineering, 28, 1397–1416.CrossRef
go back to reference Abualigah, L., Shehab, M., Diabat, A., & Abraham, A. (2020). Selection scheme sensitivity for a hybrid salp swarm algorithm: Analysis and applications. Engineering with Computers, 1–27. Abualigah, L., Shehab, M., Diabat, A., & Abraham, A. (2020). Selection scheme sensitivity for a hybrid salp swarm algorithm: Analysis and applications. Engineering with Computers, 1–27.
go back to reference Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A., & Gandomi, A. H. (2021). Aquila optimizer: A novel meta-heuristic optimization algorithm. Computers & Industrial Engineering, 157, 107250.CrossRef Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A., & Gandomi, A. H. (2021). Aquila optimizer: A novel meta-heuristic optimization algorithm. Computers & Industrial Engineering, 157, 107250.CrossRef
go back to reference Abualigah, L. M., Khader, A. T., & Hanandeh, E. S. (2019). Modified krill herd algorithm for global numerical optimization problems. In S. Shandilya, S. Shandilya, & A. Nagar (Eds.), Advances in nature-inspired computing and applications (pp. 205–221). Springer. Abualigah, L. M., Khader, A. T., & Hanandeh, E. S. (2019). Modified krill herd algorithm for global numerical optimization problems. In S. Shandilya, S. Shandilya, & A. Nagar (Eds.), Advances in nature-inspired computing and applications (pp. 205–221). Springer.
go back to reference Ali, E., El-Hameed, M., El-Fergany, A., & El-Arini, M. (2016). Parameter extraction of photovoltaic generating units using multi-verse optimizer. Sustainable Energy Technologies and Assessments, 17, 68–76.CrossRef Ali, E., El-Hameed, M., El-Fergany, A., & El-Arini, M. (2016). Parameter extraction of photovoltaic generating units using multi-verse optimizer. Sustainable Energy Technologies and Assessments, 17, 68–76.CrossRef
go back to reference Alsalibi, B., Abualigah, L., & Khader, A. T. (2020). A novel bat algorithm with dynamic membrane structure for optimization problems. Applied Intelligence, 51, 1–26. Alsalibi, B., Abualigah, L., & Khader, A. T. (2020). A novel bat algorithm with dynamic membrane structure for optimization problems. Applied Intelligence, 51, 1–26.
go back to reference Alshinwan, M., Abualigah, L., Shehab, M., Abd Elaziz, M., Khasawneh, A. M., Alabool, H., & Al Hamad, H. (2021). Dragonfly algorithm: A comprehensive survey of its results, variants, and applications. Multimedia Tools and Applications, 80, 1–38.CrossRef Alshinwan, M., Abualigah, L., Shehab, M., Abd Elaziz, M., Khasawneh, A. M., Alabool, H., & Al Hamad, H. (2021). Dragonfly algorithm: A comprehensive survey of its results, variants, and applications. Multimedia Tools and Applications, 80, 1–38.CrossRef
go back to reference Altabeeb, A. M., Mohsen, A. M., Abualigah, L., & Ghallab, A. (2021). Solving capacitated vehicle routing problem using cooperative firefly algorithm. Applied Soft Computing, 108, 107403.CrossRef Altabeeb, A. M., Mohsen, A. M., Abualigah, L., & Ghallab, A. (2021). Solving capacitated vehicle routing problem using cooperative firefly algorithm. Applied Soft Computing, 108, 107403.CrossRef
go back to reference Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: A novel approach for global optimization. Soft Computing, 23(3), 715–734.CrossRef Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: A novel approach for global optimization. Soft Computing, 23(3), 715–734.CrossRef
go back to reference Bao, X., Jia, H., & Lang, C. (2019). A novel hybrid Harris Hawks optimization for color image multilevel thresholding segmentation. IEEE Access, 7, 76529–76546.CrossRef Bao, X., Jia, H., & Lang, C. (2019). A novel hybrid Harris Hawks optimization for color image multilevel thresholding segmentation. IEEE Access, 7, 76529–76546.CrossRef
go back to reference Baykasoglu, A. (2012). Design optimization with chaos embedded great deluge algorithm. Applied Soft Computing, 12, 1055–1567.CrossRef Baykasoglu, A. (2012). Design optimization with chaos embedded great deluge algorithm. Applied Soft Computing, 12, 1055–1567.CrossRef
go back to reference Baykasoğlu, A., & Akpinar, Ş. (2015). Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems-part 2: Constrained optimization. Applied Soft Computing, 37, 396–415.CrossRef Baykasoğlu, A., & Akpinar, Ş. (2015). Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems-part 2: Constrained optimization. Applied Soft Computing, 37, 396–415.CrossRef
go back to reference Baykasoğlu, A., & Ozsoydan, F. B. (2015). Adaptive firefly algorithm with chaos for mechanical design optimization problems. Applied Soft Computing, 36, 152–164.CrossRef Baykasoğlu, A., & Ozsoydan, F. B. (2015). Adaptive firefly algorithm with chaos for mechanical design optimization problems. Applied Soft Computing, 36, 152–164.CrossRef
go back to reference Belegundu, A. . D., & Arora, J. . S. (1985). A study of mathematical programming methods for structural optimization. Part i: Theory. International Journal for Numerical Methods in Engineering, 21(9), 1583–1599.CrossRef Belegundu, A. . D., & Arora, J. . S. (1985). A study of mathematical programming methods for structural optimization. Part i: Theory. International Journal for Numerical Methods in Engineering, 21(9), 1583–1599.CrossRef
go back to reference Beyer, H.-G., & Schwefel, H.-P. (2002). Evolution strategies—A comprehensive introduction. Natural Computing, 1(1), 3–52.CrossRef Beyer, H.-G., & Schwefel, H.-P. (2002). Evolution strategies—A comprehensive introduction. Natural Computing, 1(1), 3–52.CrossRef
go back to reference Chen, H., Jiao, S., Wang, M., Heidari, A. A., & Zhao, X. (2020). Parameters identification of photovoltaic cells and modules using diversification-enriched Harris Hawks optimization with chaotic drifts. Journal of Cleaner Production, 244, 118778.CrossRef Chen, H., Jiao, S., Wang, M., Heidari, A. A., & Zhao, X. (2020). Parameters identification of photovoltaic cells and modules using diversification-enriched Harris Hawks optimization with chaotic drifts. Journal of Cleaner Production, 244, 118778.CrossRef
go back to reference Chen, H., Wang, M., & Zhao, X. (2020). A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Applied Mathematics and Computation, 369, 124872.CrossRef Chen, H., Wang, M., & Zhao, X. (2020). A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Applied Mathematics and Computation, 369, 124872.CrossRef
go back to reference Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113–127.CrossRef Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113–127.CrossRef
go back to reference Cuevas, E., Echavarría, A., & Ramírez-Ortegón, M. A. (2014). An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation. Applied intelligence, 40(2), 256–272.CrossRef Cuevas, E., Echavarría, A., & Ramírez-Ortegón, M. A. (2014). An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation. Applied intelligence, 40(2), 256–272.CrossRef
go back to reference Cully, A., & Demiris, Y. (2017). Quality and diversity optimization: A unifying modular framework. IEEE Transactions on Evolutionary Computation, 22(2), 245–259.CrossRef Cully, A., & Demiris, Y. (2017). Quality and diversity optimization: A unifying modular framework. IEEE Transactions on Evolutionary Computation, 22(2), 245–259.CrossRef
go back to reference Czerniak, J. M., Zarzycki, H., & Ewald, D. (2017). AAO as a new strategy in modeling and simulation of constructional problems optimization. Simulation Modelling Practice and Theory, 76, 22–33.CrossRef Czerniak, J. M., Zarzycki, H., & Ewald, D. (2017). AAO as a new strategy in modeling and simulation of constructional problems optimization. Simulation Modelling Practice and Theory, 76, 22–33.CrossRef
go back to reference de Melo, V. V., & Banzhaf, W. (2018). Drone squadron optimization: A novel self-adaptive algorithm for global numerical optimization. Neural Computing and Applications, 30(10), 3117–3144.CrossRef de Melo, V. V., & Banzhaf, W. (2018). Drone squadron optimization: A novel self-adaptive algorithm for global numerical optimization. Neural Computing and Applications, 30(10), 3117–3144.CrossRef
go back to reference Deb, K. (1991). Optimal design of a welded beam via genetic algorithms. AIAA Journal, 29(11), 2013–2015.CrossRef Deb, K. (1991). Optimal design of a welded beam via genetic algorithms. AIAA Journal, 29(11), 2013–2015.CrossRef
go back to reference Dhou, K. (2020). A new chain coding mechanism for compression stimulated by a virtual environment of a predator–prey ecosystem. Future Generation Computer Systems, 102, 650–669.CrossRef Dhou, K. (2020). A new chain coding mechanism for compression stimulated by a virtual environment of a predator–prey ecosystem. Future Generation Computer Systems, 102, 650–669.CrossRef
go back to reference Dhou, K., & Cruzen, C. (2020). A new chain code for bi-level image compression using an agent-based model of echolocation in dolphins. In 2020 IEEE 6th international conference on dependability in sensor, cloud and big data systems and application (DependSys) (pp. 87–91). IEEE. Dhou, K., & Cruzen, C. (2020). A new chain code for bi-level image compression using an agent-based model of echolocation in dolphins. In 2020 IEEE 6th international conference on dependability in sensor, cloud and big data systems and application (DependSys) (pp. 87–91). IEEE.
go back to reference Dhou, K., & Cruzen, C. (2021). A highly efficient chain code for compression using an agent-based modeling simulation of territories in biological beavers. Future Generation Computer Systems, 118, 1–13.CrossRef Dhou, K., & Cruzen, C. (2021). A highly efficient chain code for compression using an agent-based modeling simulation of territories in biological beavers. Future Generation Computer Systems, 118, 1–13.CrossRef
go back to reference Digalakis, J. G., & Margaritis, K. G. (2001). On benchmarking functions for genetic algorithms. International Journal of Computer Mathematics, 77(4), 481–506.CrossRef Digalakis, J. G., & Margaritis, K. G. (2001). On benchmarking functions for genetic algorithms. International Journal of Computer Mathematics, 77(4), 481–506.CrossRef
go back to reference Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks (Vol. 4, Citeseer, pp. 1942–1948). Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks (Vol. 4, Citeseer, pp. 1942–1948).
go back to reference Eid, A., Kamel, S., & Abualigah, L. (2021). Marine predators algorithm for optimal allocation of active and reactive power resources in distribution networks. Neural Computing and Applications, 33, 1–29.CrossRef Eid, A., Kamel, S., & Abualigah, L. (2021). Marine predators algorithm for optimal allocation of active and reactive power resources in distribution networks. Neural Computing and Applications, 33, 1–29.CrossRef
go back to reference El Aziz, M. A., Ewees, A. A., & Hassanien, A. E. (2016). Hybrid swarms optimization based image segmentation. In S. Bhattacharyya, P. Dutta, S. De, & G. Klepac (Eds.), Hybrid soft computing for image segmentation (pp. 1–21). Springer. El Aziz, M. A., Ewees, A. A., & Hassanien, A. E. (2016). Hybrid swarms optimization based image segmentation. In S. Bhattacharyya, P. Dutta, S. De, & G. Klepac (Eds.), Hybrid soft computing for image segmentation (pp. 1–21). Springer.
go back to reference Elaziz, M. A., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.CrossRef Elaziz, M. A., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.CrossRef
go back to reference Essa, F., Abd Elaziz, M., & Elsheikh, A. . H. (2020). An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer. Applied Thermal Engineering, 170, 115020.CrossRef Essa, F., Abd Elaziz, M., & Elsheikh, A. . H. (2020). An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer. Applied Thermal Engineering, 170, 115020.CrossRef
go back to reference Ewees, A. A., Abd El Aziz, M., & Hassanien, A. E. (2019). Chaotic multi-verse optimizer-based feature selection. Neural Computing and Applications, 31(4), 991–1006.CrossRef Ewees, A. A., Abd El Aziz, M., & Hassanien, A. E. (2019). Chaotic multi-verse optimizer-based feature selection. Neural Computing and Applications, 31(4), 991–1006.CrossRef
go back to reference Ewees, A. A., Elaziz, M. A., & Houssein, E. H. (2018). Improved grasshopper optimization algorithm using opposition-based learning. Expert Systems with Applications, 112, 156–172.CrossRef Ewees, A. A., Elaziz, M. A., & Houssein, E. H. (2018). Improved grasshopper optimization algorithm using opposition-based learning. Expert Systems with Applications, 112, 156–172.CrossRef
go back to reference Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine predators algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377.CrossRef Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine predators algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377.CrossRef
go back to reference Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems, 191, 105190.CrossRef Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems, 191, 105190.CrossRef
go back to reference Faris, H., Hassonah, M. A., Ala’M, A.-Z., Mirjalili, S., & Aljarah, I. (2018). A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Computing and Applications, 30(8), 2355–2369.CrossRef Faris, H., Hassonah, M. A., Ala’M, A.-Z., Mirjalili, S., & Aljarah, I. (2018). A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Computing and Applications, 30(8), 2355–2369.CrossRef
go back to reference Fathy, A., & Rezk, H. (2018). Multi-verse optimizer for identifying the optimal parameters of PEMFC model. Energy, 143, 634–644.CrossRef Fathy, A., & Rezk, H. (2018). Multi-verse optimizer for identifying the optimal parameters of PEMFC model. Energy, 143, 634–644.CrossRef
go back to reference Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., & Alizadeh, Y. (2008). Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Computer Methods in Applied Mechanics and Engineering, 197(33–40), 3080–3091.CrossRef Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., & Alizadeh, Y. (2008). Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Computer Methods in Applied Mechanics and Engineering, 197(33–40), 3080–3091.CrossRef
go back to reference Gandomi, A. H., & Deb, K. (2020). Implicit constraints handling for efficient search of feasible solutions. Computer Methods in Applied Mechanics and Engineering, 363, 112917.CrossRef Gandomi, A. H., & Deb, K. (2020). Implicit constraints handling for efficient search of feasible solutions. Computer Methods in Applied Mechanics and Engineering, 363, 112917.CrossRef
go back to reference Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.CrossRef Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.CrossRef
go back to reference Gandomi, A. H., Yang, X.-S., Alavi, A. H., & Talatahari, S. (2013). Bat algorithm for constrained optimization tasks. Neural Computing and Applications, 22(6), 1239–1255.CrossRef Gandomi, A. H., Yang, X.-S., Alavi, A. H., & Talatahari, S. (2013). Bat algorithm for constrained optimization tasks. Neural Computing and Applications, 22(6), 1239–1255.CrossRef
go back to reference Golilarz, N. A., Gao, H., & Demirel, H. (2019). Satellite image de-noising with Harris Hawks meta heuristic optimization algorithm and improved adaptive generalized gaussian distribution threshold function. IEEE Access, 7, 57459–57468.CrossRef Golilarz, N. A., Gao, H., & Demirel, H. (2019). Satellite image de-noising with Harris Hawks meta heuristic optimization algorithm and improved adaptive generalized gaussian distribution threshold function. IEEE Access, 7, 57459–57468.CrossRef
go back to reference Guedria, N. B. (2016). Improved accelerated PSO algorithm for mechanical engineering optimization problems. Applied Soft Computing, 40, 455–467.CrossRef Guedria, N. B. (2016). Improved accelerated PSO algorithm for mechanical engineering optimization problems. Applied Soft Computing, 40, 455–467.CrossRef
go back to reference Gupta, S., Deep, K., Moayedi, H., Foong, L. K., & Assad, A. (2020). Sine cosine grey wolf optimizer to solve engineering design problems. Engineering with Computers, 37, 1–27. Gupta, S., Deep, K., Moayedi, H., Foong, L. K., & Assad, A. (2020). Sine cosine grey wolf optimizer to solve engineering design problems. Engineering with Computers, 37, 1–27.
go back to reference Han, S. -Y., Wan, X. -Y., Wang, L., Zhou, J., & Zhong, X. -F. (2016). Comparison between genetic algorithm and differential evolution algorithm applied to one dimensional bin-packing problem. In 2016 3rd International conference on informative and cybernetics for computational social systems (ICCSS) (pp. 52–55). IEEE. Han, S. -Y., Wan, X. -Y., Wang, L., Zhou, J., & Zhong, X. -F. (2016). Comparison between genetic algorithm and differential evolution algorithm applied to one dimensional bin-packing problem. In 2016 3rd International conference on informative and cybernetics for computational social systems (ICCSS) (pp. 52–55). IEEE.
go back to reference Hassan, M. H., Kamel, S., Abualigah, L., & Eid, A. (2021). Development and application of slime mould algorithm for optimal economic emission dispatch. Expert Systems with Applications, 182, 115205.CrossRef Hassan, M. H., Kamel, S., Abualigah, L., & Eid, A. (2021). Development and application of slime mould algorithm for optimal economic emission dispatch. Expert Systems with Applications, 182, 115205.CrossRef
go back to reference Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.CrossRef Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.CrossRef
go back to reference He, Q., & Wang, L. (2007). A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation, 186(2), 1407–1422.CrossRef He, Q., & Wang, L. (2007). A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation, 186(2), 1407–1422.CrossRef
go back to reference He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20(1), 89–99.CrossRef He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20(1), 89–99.CrossRef
go back to reference Houssein, E. H., Hosney, M. E., Oliva, D., Mohamed, W. M., & Hassaballah, M. (2020). A novel hybrid Harris Hawks optimization and support vector machines for drug design and discovery. Computers & Chemical Engineering, 133, 106656.CrossRef Houssein, E. H., Hosney, M. E., Oliva, D., Mohamed, W. M., & Hassaballah, M. (2020). A novel hybrid Harris Hawks optimization and support vector machines for drug design and discovery. Computers & Chemical Engineering, 133, 106656.CrossRef
go back to reference Huang, F.-Z., Wang, L., & He, Q. (2007). An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation, 186(1), 340–356.CrossRef Huang, F.-Z., Wang, L., & He, Q. (2007). An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation, 186(1), 340–356.CrossRef
go back to reference Hu, C., Li, Z., Zhou, T., Zhu, A., & Xu, C. (2016). A multi-verse optimizer with levy flights for numerical optimization and its application in test scheduling for network-on-chip. PLoS One, 11(12), e0167341.CrossRef Hu, C., Li, Z., Zhou, T., Zhu, A., & Xu, C. (2016). A multi-verse optimizer with levy flights for numerical optimization and its application in test scheduling for network-on-chip. PLoS One, 11(12), e0167341.CrossRef
go back to reference Jiang, Y., Luo, Q., Wei, Y., Abualigah, L., et al. (2021). An efficient binary gradient-based optimizer for feature selection. Mathematical Biosciences and Engineering, 18(4), 3813–3854.CrossRef Jiang, Y., Luo, Q., Wei, Y., Abualigah, L., et al. (2021). An efficient binary gradient-based optimizer for feature selection. Mathematical Biosciences and Engineering, 18(4), 3813–3854.CrossRef
go back to reference Kamboj, V. K., Nandi, A., Bhadoria, A., & Sehgal, S. (2020). An intensify Harris Hawks optimizer for numerical and engineering optimization problems. Applied Soft Computing, 89, 106018.CrossRef Kamboj, V. K., Nandi, A., Bhadoria, A., & Sehgal, S. (2020). An intensify Harris Hawks optimizer for numerical and engineering optimization problems. Applied Soft Computing, 89, 106018.CrossRef
go back to reference Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization, Tech. Rep. 2, Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization, Tech. Rep. 2, Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department.
go back to reference Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: ray optimization. Computers & Structures, 112, 283–294.CrossRef Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: ray optimization. Computers & Structures, 112, 283–294.CrossRef
go back to reference Kaveh, A., & Talatahari, S. (2010). An improved ant colony optimization for constrained engineering design problems. Engineering Computations, 27(1), 155–182.CrossRef Kaveh, A., & Talatahari, S. (2010). An improved ant colony optimization for constrained engineering design problems. Engineering Computations, 27(1), 155–182.CrossRef
go back to reference Koziel, S., Leifsson, L., & Yang, X.-S. (2014). Solving computationally expensive engineering problems: Methods and applications (Vol. 97). Springer. Koziel, S., Leifsson, L., & Yang, X.-S. (2014). Solving computationally expensive engineering problems: Methods and applications (Vol. 97). Springer.
go back to reference Krishnanand, K., & Ghose, D. (2005). Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In Proceedings 2005 IEEE swarm intelligence symposium, 2005. SIS 2005 (pp. 84–91). IEEE. Krishnanand, K., & Ghose, D. (2005). Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In Proceedings 2005 IEEE swarm intelligence symposium, 2005. SIS 2005 (pp. 84–91). IEEE.
go back to reference Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 194(36–38), 3902–3933.CrossRef Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 194(36–38), 3902–3933.CrossRef
go back to reference Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 10(2), 629–640.CrossRef Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 10(2), 629–640.CrossRef
go back to reference Long, W., Wu, T., Liang, X., & Xu, S. (2019). Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Systems with Applications, 123, 108–126.CrossRef Long, W., Wu, T., Liang, X., & Xu, S. (2019). Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Systems with Applications, 123, 108–126.CrossRef
go back to reference Mack, G. A., & Skillings, J. H. (1980). A Friedman-type rank test for main effects in a two-factor ANOVA. Journal of the American Statistical Association, 75(372), 947–951.CrossRef Mack, G. A., & Skillings, J. H. (1980). A Friedman-type rank test for main effects in a two-factor ANOVA. Journal of the American Statistical Association, 75(372), 947–951.CrossRef
go back to reference Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 188(2), 1567–1579.CrossRef Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 188(2), 1567–1579.CrossRef
go back to reference Mezura-Montes, E., & Coello, C. A. C. (2008). An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. International Journal of General Systems, 37(4), 443–473.CrossRef Mezura-Montes, E., & Coello, C. A. C. (2008). An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. International Journal of General Systems, 37(4), 443–473.CrossRef
go back to reference Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.CrossRef Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.CrossRef
go back to reference Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based systems, 89, 228–249.CrossRef Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based systems, 89, 228–249.CrossRef
go back to reference Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based systems, 96, 120–133.CrossRef Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based systems, 96, 120–133.CrossRef
go back to reference Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053–1073.CrossRef Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053–1073.CrossRef
go back to reference Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.CrossRef Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.CrossRef
go back to reference Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef
go back to reference Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495–513.CrossRef Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495–513.CrossRef
go back to reference Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef
go back to reference Moayedi, H., Gör, M., Lyu, Z., & Bui, D. T. (2020). Herding behaviors of grasshopper and Harris Hawk for hybridizing the neural network in predicting the soil compression coefficient. Measurement, 152, 107389.CrossRef Moayedi, H., Gör, M., Lyu, Z., & Bui, D. T. (2020). Herding behaviors of grasshopper and Harris Hawk for hybridizing the neural network in predicting the soil compression coefficient. Measurement, 152, 107389.CrossRef
go back to reference Mohammed, H., & Rashid, T. (2020). A novel hybrid GWO with WOA for global numerical optimization and solving pressure vessel design. Neural Computing and Applications, 32, 1–18.CrossRef Mohammed, H., & Rashid, T. (2020). A novel hybrid GWO with WOA for global numerical optimization and solving pressure vessel design. Neural Computing and Applications, 32, 1–18.CrossRef
go back to reference Pan, W.-T. (2012). A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems, 26, 69–74.CrossRef Pan, W.-T. (2012). A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems, 26, 69–74.CrossRef
go back to reference Pathak, V. K., & Srivastava, A. K. (2020). A novel upgraded bat algorithm based on Cuckoo search and Sugeno inertia weight for large scale and constrained engineering design optimization problems. Engineering with Computers, 1–28. Pathak, V. K., & Srivastava, A. K. (2020). A novel upgraded bat algorithm based on Cuckoo search and Sugeno inertia weight for large scale and constrained engineering design optimization problems. Engineering with Computers, 1–28.
go back to reference Premkumar, M., Jangir, P., Kumar, B. S., Sowmya, R., Alhelou, H. H., Abualigah, L., Yildiz, A. R., & Mirjalili, S. (2021). A new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained optimization problems: Diversity analysis and validations, IEEE Access. Premkumar, M., Jangir, P., Kumar, B. S., Sowmya, R., Alhelou, H. H., Abualigah, L., Yildiz, A. R., & Mirjalili, S. (2021). A new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained optimization problems: Diversity analysis and validations, IEEE Access.
go back to reference Ragsdell, K., & Phillips, D. (1976). Optimal design of a class of welded structures using geometric programming. Journal of Engineering for Industry, 98, 1021–1025.CrossRef Ragsdell, K., & Phillips, D. (1976). Optimal design of a class of welded structures using geometric programming. Journal of Engineering for Industry, 98, 1021–1025.CrossRef
go back to reference Rahman, C. M., & Rashid, T. A. (2021). A new evolutionary algorithm: Learner performance based behavior algorithm. Egyptian Informatics Journal, 22, 213–223.CrossRef Rahman, C. M., & Rashid, T. A. (2021). A new evolutionary algorithm: Learner performance based behavior algorithm. Egyptian Informatics Journal, 22, 213–223.CrossRef
go back to reference Rao, S. (2019). Engineering optimization: Theory and practice. Wiley. Rao, S. (2019). Engineering optimization: Theory and practice. Wiley.
go back to reference Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.CrossRef Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.CrossRef
go back to reference Ray, T., & Saini, P. (2001). Engineering design optimization using a swarm with an intelligent information sharing among individuals. Engineering Optimization, 33(6), 735–748.CrossRef Ray, T., & Saini, P. (2001). Engineering design optimization using a swarm with an intelligent information sharing among individuals. Engineering Optimization, 33(6), 735–748.CrossRef
go back to reference Ridha, H. M., Heidari, A. A., Wang, M., & Chen, H. (2020). Boosted mutation-based Harris Hawks optimizer for parameters identification of single-diode solar cell models. Energy Conversion and Management, 209, 112660.CrossRef Ridha, H. M., Heidari, A. A., Wang, M., & Chen, H. (2020). Boosted mutation-based Harris Hawks optimizer for parameters identification of single-diode solar cell models. Energy Conversion and Management, 209, 112660.CrossRef
go back to reference Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612.CrossRef Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612.CrossRef
go back to reference Sadollah, A., Sayyaadi, H., & Yadav, A. (2018). A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm. Applied Soft Computing, 71, 747–782.CrossRef Sadollah, A., Sayyaadi, H., & Yadav, A. (2018). A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm. Applied Soft Computing, 71, 747–782.CrossRef
go back to reference Şahin, C. B., Dinler, Ö. B., & Abualigah, L. (2021). Prediction of software vulnerability based deep symbiotic genetic algorithms: Phenotyping of dominant-features. Applied Intelligence, 51, 1–17.CrossRef Şahin, C. B., Dinler, Ö. B., & Abualigah, L. (2021). Prediction of software vulnerability based deep symbiotic genetic algorithms: Phenotyping of dominant-features. Applied Intelligence, 51, 1–17.CrossRef
go back to reference Sandgren, E. (1990). Nonlinear integer and discrete programming in mechanical design optimization. Journal of Mechanical Design, 112(2), 223–229.CrossRef Sandgren, E. (1990). Nonlinear integer and discrete programming in mechanical design optimization. Journal of Mechanical Design, 112(2), 223–229.CrossRef
go back to reference Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application. Advances in Engineering Software, 105, 30–47.CrossRef Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application. Advances in Engineering Software, 105, 30–47.CrossRef
go back to reference Sarker, R. A., Elsayed, S. M., & Ray, T. (2014). Differential evolution with dynamic parameters selection for optimization problems. IEEE Transactions on Evolutionary Computation, 18(5), 689–707.CrossRef Sarker, R. A., Elsayed, S. M., & Ray, T. (2014). Differential evolution with dynamic parameters selection for optimization problems. IEEE Transactions on Evolutionary Computation, 18(5), 689–707.CrossRef
go back to reference Sattar, D., & Salim, R. (2020). A smart metaheuristic algorithm for solving engineering problems. Engineering with Computers, 37, 1–29. Sattar, D., & Salim, R. (2020). A smart metaheuristic algorithm for solving engineering problems. Engineering with Computers, 37, 1–29.
go back to reference Shehab, M., Abualigah, L., Al Hamad, H., Alabool, H., Alshinwan, M., & Khasawneh, A. . M. (2020). Moth–flame optimization algorithm: Variants and applications. Neural Computing and Applications, 32(14), 9859–9884.CrossRef Shehab, M., Abualigah, L., Al Hamad, H., Alabool, H., Alshinwan, M., & Khasawneh, A. . M. (2020). Moth–flame optimization algorithm: Variants and applications. Neural Computing and Applications, 32(14), 9859–9884.CrossRef
go back to reference Shehab, M., Alshawabkah, H., Abualigah, L., & Nagham, A.-M. (2020). Enhanced a hybrid moth-flame optimization algorithm using new selection schemes. Engineering with Computers, 37, 1–26. Shehab, M., Alshawabkah, H., Abualigah, L., & Nagham, A.-M. (2020). Enhanced a hybrid moth-flame optimization algorithm using new selection schemes. Engineering with Computers, 37, 1–26.
go back to reference Shukri, S., Faris, H., Aljarah, I., Mirjalili, S., & Abraham, A. (2018). Evolutionary static and dynamic clustering algorithms based on multi-verse optimizer. Engineering Applications of Artificial Intelligence, 72, 54–66.CrossRef Shukri, S., Faris, H., Aljarah, I., Mirjalili, S., & Abraham, A. (2018). Evolutionary static and dynamic clustering algorithms based on multi-verse optimizer. Engineering Applications of Artificial Intelligence, 72, 54–66.CrossRef
go back to reference Singh, N., Chiclana, F., Magnot, J.-P., et al. (2020). A new fusion of salp swarm with sine cosine for optimization of non-linear functions. Engineering with Computers, 36(1), 185–212.CrossRef Singh, N., Chiclana, F., Magnot, J.-P., et al. (2020). A new fusion of salp swarm with sine cosine for optimization of non-linear functions. Engineering with Computers, 36(1), 185–212.CrossRef
go back to reference Truong, K. H., Nallagownden, P., Baharudin, Z., & Vo, D. N. (2019). A quasi-oppositional-chaotic symbiotic organisms search algorithm for global optimization problems. Applied Soft Computing, 77, 567–583.CrossRef Truong, K. H., Nallagownden, P., Baharudin, Z., & Vo, D. N. (2019). A quasi-oppositional-chaotic symbiotic organisms search algorithm for global optimization problems. Applied Soft Computing, 77, 567–583.CrossRef
go back to reference Tsai, J.-F. (2005). Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization, 37(4), 399–409.CrossRef Tsai, J.-F. (2005). Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization, 37(4), 399–409.CrossRef
go back to reference Wang, S., Liu, Q., Liu, Y., Jia, H., Abualigah, L., Zheng, R., & Wu, D. (2021). A hybrid SSA and SMA with mutation opposition-based learning for constrained engineering problems. Computational Intelligence and Neuroscience. Wang, S., Liu, Q., Liu, Y., Jia, H., Abualigah, L., Zheng, R., & Wu, D. (2021). A hybrid SSA and SMA with mutation opposition-based learning for constrained engineering problems. Computational Intelligence and Neuroscience.
go back to reference Wang, Z., Luo, Q., & Zhou, Y. (2021). Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems. Engineering with Computers, 37, 3665–3698. Wang, Z., Luo, Q., & Zhou, Y. (2021). Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems. Engineering with Computers, 37, 3665–3698.
go back to reference Wang, X., Pan, J.-S., & Chu, S.-C. (2020). A parallel multi-verse optimizer for application in multilevel image segmentation. IEEE Access, 8, 32018–32030.CrossRef Wang, X., Pan, J.-S., & Chu, S.-C. (2020). A parallel multi-verse optimizer for application in multilevel image segmentation. IEEE Access, 8, 32018–32030.CrossRef
go back to reference Xu, M., You, X., & Liu, S. (2017). A novel heuristic communication heterogeneous dual population ant colony optimization algorithm. IEEE Access, 5, 18506–18515.CrossRef Xu, M., You, X., & Liu, S. (2017). A novel heuristic communication heterogeneous dual population ant colony optimization algorithm. IEEE Access, 5, 18506–18515.CrossRef
go back to reference Yang, X. .-S. (2008). Nature-inspired metaheuristic algorithms. Luniver Press. Yang, X. .-S. (2008). Nature-inspired metaheuristic algorithms. Luniver Press.
go back to reference Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary computation, 3(2), 82–102.CrossRef Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary computation, 3(2), 82–102.CrossRef
go back to reference Yousri, D., Abd Elaziz, M., Abualigah, L., Oliva, D., Al-Qaness, M. A., & Ewees, A. A. (2021). Covid-19 x-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions. Applied Soft Computing, 101, 107052.CrossRef Yousri, D., Abd Elaziz, M., Abualigah, L., Oliva, D., Al-Qaness, M. A., & Ewees, A. A. (2021). Covid-19 x-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions. Applied Soft Computing, 101, 107052.CrossRef
go back to reference Yousri, D., Allam, D., & Eteiba, M. B. (2020). Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified Harris Hawks optimizer. Energy Conversion and Management, 206, 112470.CrossRef Yousri, D., Allam, D., & Eteiba, M. B. (2020). Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified Harris Hawks optimizer. Energy Conversion and Management, 206, 112470.CrossRef
go back to reference Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences, 178(15), 3043–3074.CrossRef Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences, 178(15), 3043–3074.CrossRef
go back to reference Zheng, R., Jia, H., Abualigah, L., Liu, Q., & Wang, S. (2021). Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization. Processes, 9(10), 1774.CrossRef Zheng, R., Jia, H., Abualigah, L., Liu, Q., & Wang, S. (2021). Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization. Processes, 9(10), 1774.CrossRef
Metadata
Title
Boosted Harris Hawks gravitational force algorithm for global optimization and industrial engineering problems
Authors
Laith Abualigah
Ali Diabat
Davor Svetinovic
Mohamed Abd Elaziz
Publication date
30-04-2022
Publisher
Springer US
Published in
Journal of Intelligent Manufacturing / Issue 6/2023
Print ISSN: 0956-5515
Electronic ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-022-01921-4

Other articles of this Issue 6/2023

Journal of Intelligent Manufacturing 6/2023 Go to the issue

Premium Partners