Skip to main content
Top
Published in: Journal of Materials Science 18/2017

12-06-2017 | Composites

Boron nitride-reinforced SS316 composite: influence of laser processing parameters on microstructure and wear resistance

Authors: Bryan Heer, Himanshu Sahasrabudhe, Asit Kumar Khanra, Amit Bandyopadhyay

Published in: Journal of Materials Science | Issue 18/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using laser surface modification, coatings of stainless steel 316 (SS316) alloy with 5 weight % hexagonal boron nitride (BN) were processed and then subjected to various tests to determine whether altering surface chemistry and microstructures via laser passes could enhance the mechanical performance of the coating. X-ray diffraction (XRD), scanning electron microscopy, Vickers hardness, and wear tests were used to characterize the coatings. It was hypothesized that the introduction of BN and modifying microstructures would influence hardness and wear resistance. The substrate was used as a control with a hardness of 178 ± 13 HV and a wear rate of 2.30 ± 0.04 × 10−4 mm3/Nm. The addition of laser passes on the substrate slightly reduced wear rates while increasing hardness values by at least 12%. However, the addition of 5 wt% BN with no laser passes increased surface hardness by 85% to 329 ± 17 HV and reduced the wear rate by 38% to 1.43 ± 0.02 × 10−4 m3/Nm. Modifying the composite’s surface with one additional laser pass increased the surface hardness by 78% to 316 ± 6 HV and decreased the wear rate by 51% to 1.13 ± 0.01 × 10−4 mm3/Nm. Two laser passes increased the composite’s surface hardness by 71% to 304 ± 6 HV and decreased the wear rate by 55% to 1.04 ± 0.02 × 10−4 mm3/Nm. Grain sizes were smaller in the coating when compared to the substrate and exhibited congruency at the coating–substrate interface. XRD analysis confirmed a major phase of austenitic stainless steel in the coating while containing a small amount of minor phase hexagonal BN. Our results indicate that both BN reinforcement and laser processing parameters can positively influence surface properties of these structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Davis JR (ed) (2001) The economic effects of corrosion and wear. In: Surface engineering for corrosion and wear resistance. ASM International, Materials Park, p 3 Davis JR (ed) (2001) The economic effects of corrosion and wear. In: Surface engineering for corrosion and wear resistance. ASM International, Materials Park, p 3
2.
go back to reference Bandyopadhyay A, Bose S (eds) (2015) Additive manufacturing. CRC Press, Boca Raton, p 8 Bandyopadhyay A, Bose S (eds) (2015) Additive manufacturing. CRC Press, Boca Raton, p 8
3.
go back to reference Jiang P et al (2000) Wear resistance of a laser surface alloyed Ti–6Al–4 V alloy. Surf Coat Technol 130(1):24–28CrossRef Jiang P et al (2000) Wear resistance of a laser surface alloyed Ti–6Al–4 V alloy. Surf Coat Technol 130(1):24–28CrossRef
4.
go back to reference Tian YS et al (2005) Research progress on laser surface modification of titanium alloys. Appl Surf Sci 242(1):177–184CrossRef Tian YS et al (2005) Research progress on laser surface modification of titanium alloys. Appl Surf Sci 242(1):177–184CrossRef
5.
go back to reference Balla VK, Bhat A, Bose S, Bandyopadhyay A (2012) Laser processed TiN reinforced Ti6Al4 V composite coatings. J Mech Behav Biomed Mater 6:9–20CrossRef Balla VK, Bhat A, Bose S, Bandyopadhyay A (2012) Laser processed TiN reinforced Ti6Al4 V composite coatings. J Mech Behav Biomed Mater 6:9–20CrossRef
6.
go back to reference Sahasrabudhe H, Dittrick SA, Bandyopadhyay A (2013) Laser processing of Fe-based bulk amorphous alloy coatings on titanium. Metall Mater Trans A 44(11):4914–4926CrossRef Sahasrabudhe H, Dittrick SA, Bandyopadhyay A (2013) Laser processing of Fe-based bulk amorphous alloy coatings on titanium. Metall Mater Trans A 44(11):4914–4926CrossRef
7.
go back to reference Bandyopadhyay A, Balla VK, Roy M, Bose S (2011) Laser surface modification of metallic biomaterials. JOM 63(6):94–99CrossRef Bandyopadhyay A, Balla VK, Roy M, Bose S (2011) Laser surface modification of metallic biomaterials. JOM 63(6):94–99CrossRef
8.
go back to reference Balla VK, Bandyopadhyay A (2015) Surface modification of AISI 410 stainless steel using laser engineered net shaping (LENS™). Mater Des 30:1490–1496 Balla VK, Bandyopadhyay A (2015) Surface modification of AISI 410 stainless steel using laser engineered net shaping (LENS™). Mater Des 30:1490–1496
9.
go back to reference Tassin C et al (1996) Improvement of the wear resistance of 316L stainless steel by laser surface alloying. Surf Coat Technol 80(1):207–210CrossRef Tassin C et al (1996) Improvement of the wear resistance of 316L stainless steel by laser surface alloying. Surf Coat Technol 80(1):207–210CrossRef
10.
go back to reference Peyre P et al (2000) Surface modifications induced in 316L steel by laser peening and shot-peening, influence on pitting corrosion resistance. Mater Sci Eng A 280(2):294–302CrossRef Peyre P et al (2000) Surface modifications induced in 316L steel by laser peening and shot-peening, influence on pitting corrosion resistance. Mater Sci Eng A 280(2):294–302CrossRef
11.
go back to reference Balla VK, Bose S, Bandyopadhyay A (2010) Microstructure and wear properties of laser deposited WC-12%Co composites. Mater Sci Eng, A 527:6677–6682CrossRef Balla VK, Bose S, Bandyopadhyay A (2010) Microstructure and wear properties of laser deposited WC-12%Co composites. Mater Sci Eng, A 527:6677–6682CrossRef
12.
go back to reference Mondal AK et al (2008) Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy. Surf Coat Technol 202(14):3187–3198CrossRef Mondal AK et al (2008) Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy. Surf Coat Technol 202(14):3187–3198CrossRef
13.
go back to reference Majumdar JD et al (2003) Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy. Mater Sci Eng, A 361(1):119–129CrossRef Majumdar JD et al (2003) Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy. Mater Sci Eng, A 361(1):119–129CrossRef
15.
go back to reference ASTM Standard F2792-12a (2012) Standard terminology for additive manufacturing technologies. ASTM International, West Conshohocken. doi:10.1520/F2792-12A ASTM Standard F2792-12a (2012) Standard terminology for additive manufacturing technologies. ASTM International, West Conshohocken. doi:10.​1520/​F2792-12A
16.
go back to reference ASTM G133-05(2010), Standard test method for linearly reciprocating ball-on-flat sliding wear, ASTM International, West Conshohocken, www.astm.org ASTM G133-05(2010), Standard test method for linearly reciprocating ball-on-flat sliding wear, ASTM International, West Conshohocken, www.​astm.​org
17.
go back to reference Balla VK, Soderlind J, Bose S, Bandyopadhyay A (2014) Microstructure, mechanical and wear properties of laser surface melted Ti6Al4 V alloy. J Mech Behav Biomed Mater 32:335–344CrossRef Balla VK, Soderlind J, Bose S, Bandyopadhyay A (2014) Microstructure, mechanical and wear properties of laser surface melted Ti6Al4 V alloy. J Mech Behav Biomed Mater 32:335–344CrossRef
18.
go back to reference Majumdar JD, Pinkerton A, Liu Z, Manna I, Li L (2005) Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel. Appl Surf Sci 247(1):320–327CrossRef Majumdar JD, Pinkerton A, Liu Z, Manna I, Li L (2005) Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel. Appl Surf Sci 247(1):320–327CrossRef
19.
go back to reference Majumdar JD, Kumar A, Li L (2009) Direct laser cladding of SiC dispersed AISI 316L stainless steel. Tribol Int 42(5):750–753CrossRef Majumdar JD, Kumar A, Li L (2009) Direct laser cladding of SiC dispersed AISI 316L stainless steel. Tribol Int 42(5):750–753CrossRef
20.
go back to reference de Lima MSF, Sankaré S (2014) Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers. Mater Des 55:526–532CrossRef de Lima MSF, Sankaré S (2014) Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers. Mater Des 55:526–532CrossRef
21.
go back to reference Zhang K, Wang S, Liu W, Shang X (2014) Characterization of stainless steel parts by laser metal deposition shaping. Mater Des 55:104–119CrossRef Zhang K, Wang S, Liu W, Shang X (2014) Characterization of stainless steel parts by laser metal deposition shaping. Mater Des 55:104–119CrossRef
22.
go back to reference Shah K, Haq I, Khan A, Shah SA, Khan M, Pinkerton AJ (2014) Parametric study of development of inconel-steel functionally graded materials by laser direct metal deposition. Mater Des 54:531–538CrossRef Shah K, Haq I, Khan A, Shah SA, Khan M, Pinkerton AJ (2014) Parametric study of development of inconel-steel functionally graded materials by laser direct metal deposition. Mater Des 54:531–538CrossRef
23.
go back to reference Navas C, Conde A, Fernandez BJ, Zubiri F, De Damborenea J (2005) Laser coatings to improve wear resistance of mould steel. Surf Coat Technol 194(1):136–142CrossRef Navas C, Conde A, Fernandez BJ, Zubiri F, De Damborenea J (2005) Laser coatings to improve wear resistance of mould steel. Surf Coat Technol 194(1):136–142CrossRef
24.
go back to reference Blawert C, Weisheit A, Mordike BL, Knoop RM (1996) Plasma immersion ion implantation of stainless steel: austenitic stainless steel in comparison to austenitic-ferritic stainless steel. Surf Coat Technol 85(1):15–27CrossRef Blawert C, Weisheit A, Mordike BL, Knoop RM (1996) Plasma immersion ion implantation of stainless steel: austenitic stainless steel in comparison to austenitic-ferritic stainless steel. Surf Coat Technol 85(1):15–27CrossRef
25.
go back to reference Kelly SM, Kampe SL (2004) Microstructural evolution in laser-deposited multilayer Ti-6Al-4 V builds: part I. Microstruct Charact Metall Mater Trans 35(6):1861–1867CrossRef Kelly SM, Kampe SL (2004) Microstructural evolution in laser-deposited multilayer Ti-6Al-4 V builds: part I. Microstruct Charact Metall Mater Trans 35(6):1861–1867CrossRef
26.
go back to reference Krishnan S, Dumbre J, Bhatt S, Akinlabi ET, Ramalingam R (2013) Effect of crystallographic orientation on the pitting corrosion resistance of laser surface melted AISI 304L austenitic stainless steel. Int Sch Sci Res Innov 7(4):651–653 Krishnan S, Dumbre J, Bhatt S, Akinlabi ET, Ramalingam R (2013) Effect of crystallographic orientation on the pitting corrosion resistance of laser surface melted AISI 304L austenitic stainless steel. Int Sch Sci Res Innov 7(4):651–653
27.
go back to reference Man HC, Bai M, Cheng FT (2011) Laser diffusion nitriding of Ti–6Al–4 V for improving hardness and wear resistance. Appl Surf Sci 258(1):436–441CrossRef Man HC, Bai M, Cheng FT (2011) Laser diffusion nitriding of Ti–6Al–4 V for improving hardness and wear resistance. Appl Surf Sci 258(1):436–441CrossRef
28.
go back to reference España FA, Balla VK, Bandyopadhyay A (2011) Laser processing of bulk Al-12Si alloy: influence of microstructure on thermal properties. Phil Mag 91(4):574–588CrossRef España FA, Balla VK, Bandyopadhyay A (2011) Laser processing of bulk Al-12Si alloy: influence of microstructure on thermal properties. Phil Mag 91(4):574–588CrossRef
29.
go back to reference Zhang Y, Wei Z, Shi L, Xi M (2008) Characterization of laser powder deposited Ti–TiC composites and functional gradient materials. J Mater Process Technol 206(1):438–444CrossRef Zhang Y, Wei Z, Shi L, Xi M (2008) Characterization of laser powder deposited Ti–TiC composites and functional gradient materials. J Mater Process Technol 206(1):438–444CrossRef
30.
go back to reference Hofmann DC, Roberts S, Otis R, Kolodziejska J, Dillon RP, Suh J, Shapiro AA, Liu Z, Borgonia J (2014) Developing gradient metal alloys through radial deposition additive manufacturing. Sci Rep 4:5357. doi:10.1038/srep05357 CrossRef Hofmann DC, Roberts S, Otis R, Kolodziejska J, Dillon RP, Suh J, Shapiro AA, Liu Z, Borgonia J (2014) Developing gradient metal alloys through radial deposition additive manufacturing. Sci Rep 4:5357. doi:10.​1038/​srep05357 CrossRef
31.
go back to reference Wu DJ, Liang XK, Li Q, Jiang LJ (2011) Fabrication of SS316L/Ni25 functionally gradient materials using laser engineered net shaping. Mater Sci Forum Trans Tech Publ 675:803–806CrossRef Wu DJ, Liang XK, Li Q, Jiang LJ (2011) Fabrication of SS316L/Ni25 functionally gradient materials using laser engineered net shaping. Mater Sci Forum Trans Tech Publ 675:803–806CrossRef
32.
go back to reference Jun Y, Sun GP, Jia SS (2008) Characterization and wear resistance of laser surface melting AZ91D alloy. J Alloy Compd 455(1):142–147CrossRef Jun Y, Sun GP, Jia SS (2008) Characterization and wear resistance of laser surface melting AZ91D alloy. J Alloy Compd 455(1):142–147CrossRef
33.
go back to reference Balla VK, DeVasConCellos PD, Xue W, Bose S, Bandyopadhyay A (2009) Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS). Acta Biomater 5(5):1831–1837CrossRef Balla VK, DeVasConCellos PD, Xue W, Bose S, Bandyopadhyay A (2009) Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS). Acta Biomater 5(5):1831–1837CrossRef
34.
go back to reference Dittrick S, Balla VK, Davies NM, Bose S, Bandyopadhyay A (2011) In vitro wear rate and Co ion release of compositionally and structurally graded CoCrMo-Ti6Al4 V structures. Mater Sci Eng C 31(4):809–814CrossRef Dittrick S, Balla VK, Davies NM, Bose S, Bandyopadhyay A (2011) In vitro wear rate and Co ion release of compositionally and structurally graded CoCrMo-Ti6Al4 V structures. Mater Sci Eng C 31(4):809–814CrossRef
35.
go back to reference Ceschini L, Chiavari C, Lanzoni E, Martini C (2012) Low-temperature carburised AISI 316L austenitic stainless steel: wear and corrosion behavior. Mater Des 38:154–160CrossRef Ceschini L, Chiavari C, Lanzoni E, Martini C (2012) Low-temperature carburised AISI 316L austenitic stainless steel: wear and corrosion behavior. Mater Des 38:154–160CrossRef
36.
go back to reference Sun Y, Bell T (1998) Sliding wear characteristics of low temperature plasma nitrided 316 austenitic stainless steel. Wear 218(1):34–42CrossRef Sun Y, Bell T (1998) Sliding wear characteristics of low temperature plasma nitrided 316 austenitic stainless steel. Wear 218(1):34–42CrossRef
37.
go back to reference Zandrahimi M, Poladi A, Szpunar JA (2007) The formation of martensite during wear of AISI 304 stainless steel. Wear 263(1):674–678CrossRef Zandrahimi M, Poladi A, Szpunar JA (2007) The formation of martensite during wear of AISI 304 stainless steel. Wear 263(1):674–678CrossRef
38.
go back to reference Akhtar F, Guo S (2007) On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites. Acta Mater 55(4):1467–1477CrossRef Akhtar F, Guo S (2007) On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites. Acta Mater 55(4):1467–1477CrossRef
39.
go back to reference Akhtar F, Guo SJ (2008) Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites. Mater Charact 59(1):84–90CrossRef Akhtar F, Guo SJ (2008) Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites. Mater Charact 59(1):84–90CrossRef
40.
go back to reference Zhao XQ, Zhou HD, Chen JM (2006) Comparative study of the friction and wear behavior of plasma sprayed conventional and nanostructured WC–12% Co coatings on stainless steel. Mater Sci Eng, A 431(1):290–297CrossRef Zhao XQ, Zhou HD, Chen JM (2006) Comparative study of the friction and wear behavior of plasma sprayed conventional and nanostructured WC–12% Co coatings on stainless steel. Mater Sci Eng, A 431(1):290–297CrossRef
41.
go back to reference Bateni MR, Szpunar JA, Wang X, Li DY (2006) Wear and corrosion wear of medium carbon steel and 304 stainless steel. Wear 260(1):116–122CrossRef Bateni MR, Szpunar JA, Wang X, Li DY (2006) Wear and corrosion wear of medium carbon steel and 304 stainless steel. Wear 260(1):116–122CrossRef
Metadata
Title
Boron nitride-reinforced SS316 composite: influence of laser processing parameters on microstructure and wear resistance
Authors
Bryan Heer
Himanshu Sahasrabudhe
Asit Kumar Khanra
Amit Bandyopadhyay
Publication date
12-06-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1271-7

Other articles of this Issue 18/2017

Journal of Materials Science 18/2017 Go to the issue

Premium Partners