Skip to main content
Top
Published in: Journal of Materials Science 18/2017

05-06-2017 | Composites

Enhanced mechanical, dielectric, electrical and thermal conductive properties of HXNBR/HNBR blends filled with ionic liquid-modified multiwalled carbon nanotubes

Authors: Qing Yin, Yanwei Wen, Hongbing Jia, Liu Hong, Qingmin Ji, Zhaodong Xu

Published in: Journal of Materials Science | Issue 18/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

1-Butyl 3-methylimidazolium bis(trifluoromethylsulfonyl) imide (BMI)-modified multiwalled carbon nanotubes (MWCNTs) were used as nanofillers for the hydrogenated carboxylated nitrile–butadiene rubber/hydrogenated nitrile–butadiene rubber (HXNBR/HNBR) blends. The multifunctional properties of rubber nanocomposites with various filler loadings were investigated. It was found that in the presence of BMI-MWCNTs, the mechanical strength, dielectric properties, electrical and thermal conductivities of HXNBR/HNBR were significantly improved due to the better dispersibility as well as the intrinsic reinforcement effect of MWCNTs. Particularly, in comparison with unfilled rubber blend, the electrical conductivity of BMI-MWCNTs-filled HXNBR/HNBR composites exhibited three orders of magnitude enhancement with a lower electrical percolation threshold. The tensile strength and thermal conductivity of composites filled with 5 phr (parts per hundred rubber) BMI-MWCNTs increased by 52 and 23%, respectively. In addition, the polarizability of composites was also intensified under the applied electric field, which resulted in remarkable dielectric relaxation compared to neat rubber. Our experimental data have indicated that BMI-MWCNTs can be used as a promising candidate for fabricating multifunctional HXNBR/HNBR nanocomposites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Psarras GC, Sofos GA, Vradis A, Anastassopoulos DL, Georga SN, Krontiras CA, Karger-Kocsis J (2014) HNBR and its MWCNT reinforced nanocomposites: crystalline morphology and electrical response. Eur Polym J 54:190–199CrossRef Psarras GC, Sofos GA, Vradis A, Anastassopoulos DL, Georga SN, Krontiras CA, Karger-Kocsis J (2014) HNBR and its MWCNT reinforced nanocomposites: crystalline morphology and electrical response. Eur Polym J 54:190–199CrossRef
2.
go back to reference Pan L, Tan J, Han X, Li P, Zhang W (2016) Effects of elevated temperature and crude oil on the properties of a hydrogenated nitrile butadiene rubber elastomer. J Appl Polym Sci 133:44012 Pan L, Tan J, Han X, Li P, Zhang W (2016) Effects of elevated temperature and crude oil on the properties of a hydrogenated nitrile butadiene rubber elastomer. J Appl Polym Sci 133:44012
3.
go back to reference Han Y, Mao L, Meng H, Zhang L, Yue D (2014) Novel self-crosslinking film from hydrogenated carboxylated nitrile rubber latex. J Appl Polym Sci 131:39865 Han Y, Mao L, Meng H, Zhang L, Yue D (2014) Novel self-crosslinking film from hydrogenated carboxylated nitrile rubber latex. J Appl Polym Sci 131:39865
4.
go back to reference Perraud S, Vallat MF, David MO, Kuczynski J (2010) Network characteristics of hydrogenated nitrile butadiene rubber networks obtained by radiation crosslinking by electron beam. Polym Degrad Stab 95:1495–1501CrossRef Perraud S, Vallat MF, David MO, Kuczynski J (2010) Network characteristics of hydrogenated nitrile butadiene rubber networks obtained by radiation crosslinking by electron beam. Polym Degrad Stab 95:1495–1501CrossRef
5.
go back to reference Pan L, Tan J (2015) Numerical investigation of contact stress between rotor and stator in a two-lead progressing cavity pump. J Pet Sci Eng 134:176–185CrossRef Pan L, Tan J (2015) Numerical investigation of contact stress between rotor and stator in a two-lead progressing cavity pump. J Pet Sci Eng 134:176–185CrossRef
6.
go back to reference Cao Y, Zhang J, Feng J, Wu P (2011) Compatibilization of immiscible polymer blends using graphene oxide sheets. ACS Nano 5:5920–5927CrossRef Cao Y, Zhang J, Feng J, Wu P (2011) Compatibilization of immiscible polymer blends using graphene oxide sheets. ACS Nano 5:5920–5927CrossRef
7.
go back to reference Guo B, Tang Z, Zhang L (2016) Transport performance in novel elastomer nanocomposites: mechanism, design and control. Prog Polym Sci 61:29–66CrossRef Guo B, Tang Z, Zhang L (2016) Transport performance in novel elastomer nanocomposites: mechanism, design and control. Prog Polym Sci 61:29–66CrossRef
8.
go back to reference Deng F, Ito M, Noguchi T, Wang L, Ueki H, Niihara K, Kim YA, Endo M, Zheng QS (2011) Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites. ACS Nano 5:3858–3866CrossRef Deng F, Ito M, Noguchi T, Wang L, Ueki H, Niihara K, Kim YA, Endo M, Zheng QS (2011) Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites. ACS Nano 5:3858–3866CrossRef
9.
go back to reference Gogotsi Y (2010) High-temperature rubber made from carbon nanotubes. Science 330:1332–1333CrossRef Gogotsi Y (2010) High-temperature rubber made from carbon nanotubes. Science 330:1332–1333CrossRef
10.
go back to reference Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205CrossRef Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205CrossRef
11.
go back to reference Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48:4907–4920CrossRef Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48:4907–4920CrossRef
12.
go back to reference Lu L, Zhai Y, Zhang Y, Ong C, Guo S (2008) Reinforcement of hydrogenated carboxylated nitrile-butadiene rubber by multi-walled carbon nanotubes. Appl Surf Sci 255:2162–2166CrossRef Lu L, Zhai Y, Zhang Y, Ong C, Guo S (2008) Reinforcement of hydrogenated carboxylated nitrile-butadiene rubber by multi-walled carbon nanotubes. Appl Surf Sci 255:2162–2166CrossRef
13.
go back to reference George N, Chandra J, Mathiazhagan A, Joseph R (2015) High performance natural rubber composites with conductive segregated network of multiwalled carbon nanotubes. Compos Sci Technol 116:33–40CrossRef George N, Chandra J, Mathiazhagan A, Joseph R (2015) High performance natural rubber composites with conductive segregated network of multiwalled carbon nanotubes. Compos Sci Technol 116:33–40CrossRef
14.
go back to reference Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074CrossRef Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074CrossRef
15.
go back to reference Subramaniam K, Das A, Steinhauser D, Klüppel M, Heinrich G (2011) Effect of ionic liquid on dielectric, mechanical and dynamic mechanical properties of multi-walled carbon nanotubes/polychloroprene rubber composites. Eur Polym J 47:2234–2243CrossRef Subramaniam K, Das A, Steinhauser D, Klüppel M, Heinrich G (2011) Effect of ionic liquid on dielectric, mechanical and dynamic mechanical properties of multi-walled carbon nanotubes/polychloroprene rubber composites. Eur Polym J 47:2234–2243CrossRef
16.
go back to reference Abraham J, Arif M, Kailas L, Kalarikkal N, George SC, Thomas S (2016) Developing highly conducting and mechanically durable styrene butadiene rubber composites with tailored microstructural properties by a green approach using ionic liquid modified MWCNTs. RSC Adv 6:32493–32504CrossRef Abraham J, Arif M, Kailas L, Kalarikkal N, George SC, Thomas S (2016) Developing highly conducting and mechanically durable styrene butadiene rubber composites with tailored microstructural properties by a green approach using ionic liquid modified MWCNTs. RSC Adv 6:32493–32504CrossRef
17.
go back to reference Natarajan B, Li Y, Deng H, Brinson LC, Schadler LS (2013) Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites. Macromolecules 46:2833–2841CrossRef Natarajan B, Li Y, Deng H, Brinson LC, Schadler LS (2013) Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites. Macromolecules 46:2833–2841CrossRef
18.
go back to reference Fukushima T, Aida T (2007) Ionic liquids for soft functional materials with carbon nanotubes. Chem Eur J 13:5048–5058CrossRef Fukushima T, Aida T (2007) Ionic liquids for soft functional materials with carbon nanotubes. Chem Eur J 13:5048–5058CrossRef
19.
go back to reference Tan P, Zhang SL, Yue KT, Huang F, Shi Z, Zhou X, Gu Z (1997) Comparative study of carbon nanotubes Raman prepared by D.C. Arc discharge and catalytic methods. J Raman Spectrosc 28:369–372CrossRef Tan P, Zhang SL, Yue KT, Huang F, Shi Z, Zhou X, Gu Z (1997) Comparative study of carbon nanotubes Raman prepared by D.C. Arc discharge and catalytic methods. J Raman Spectrosc 28:369–372CrossRef
20.
go back to reference Laskowska A, Marzec A, Boiteux G, Zaborski M, Gain O, Serghei A (2013) Effect of imidazolium ionic liquid type on the properties of nitrile rubber composites. Polym Int 62:1575–1582 Laskowska A, Marzec A, Boiteux G, Zaborski M, Gain O, Serghei A (2013) Effect of imidazolium ionic liquid type on the properties of nitrile rubber composites. Polym Int 62:1575–1582
21.
go back to reference Bai X, Wan C, Zhang Y, Zhai Y (2011) Reinforcement of hydrogenated carboxylated nitrile-butadiene rubber with exfoliated graphene oxide. Carbon 49:1608–1613CrossRef Bai X, Wan C, Zhang Y, Zhai Y (2011) Reinforcement of hydrogenated carboxylated nitrile-butadiene rubber with exfoliated graphene oxide. Carbon 49:1608–1613CrossRef
22.
go back to reference Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef
23.
go back to reference Tang Z, Wu X, Guo B, Zhang L, Jia D (2012) Preparation of butadiene-styrene-vinyl pyridine rubber-graphene oxide hybrids through co-coagulation process and in situ interface tailoring. J Mater Chem 22:7492–7501CrossRef Tang Z, Wu X, Guo B, Zhang L, Jia D (2012) Preparation of butadiene-styrene-vinyl pyridine rubber-graphene oxide hybrids through co-coagulation process and in situ interface tailoring. J Mater Chem 22:7492–7501CrossRef
24.
go back to reference Bokobza L (2004) The reinforcement of elastomeric networks by fillers. Macromol Mater Eng 289:607–621CrossRef Bokobza L (2004) The reinforcement of elastomeric networks by fillers. Macromol Mater Eng 289:607–621CrossRef
25.
go back to reference Xing W, Wu J, Huang G, Li H, Tang M, Fu X (2014) Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content. Polym Int 63:1674–1681CrossRef Xing W, Wu J, Huang G, Li H, Tang M, Fu X (2014) Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content. Polym Int 63:1674–1681CrossRef
26.
go back to reference Tang Z, Zhang L, Feng W, Guo B, Liu F, Jia D (2014) Rational design of graphene surface chemistry for high-performance rubber/graphene composites. Macromolecules 47:8663–8673CrossRef Tang Z, Zhang L, Feng W, Guo B, Liu F, Jia D (2014) Rational design of graphene surface chemistry for high-performance rubber/graphene composites. Macromolecules 47:8663–8673CrossRef
27.
go back to reference Wang J, Jia H, Tang Y, Ji D, Sun Y, Gong X, Ding L (2013) Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J Mater Sci 48:1571–1577. doi:10.1007/s10853-012-6913-1 CrossRef Wang J, Jia H, Tang Y, Ji D, Sun Y, Gong X, Ding L (2013) Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J Mater Sci 48:1571–1577. doi:10.​1007/​s10853-012-6913-1 CrossRef
28.
go back to reference Zhang X, Wang J, Jia H, You S, Xiong X, Ding L, Xu Z (2016) Multifunctional nanocomposites between natural rubber and polyvinyl pyrrolidone modified graphene. Compos Part B Eng 84:121–129CrossRef Zhang X, Wang J, Jia H, You S, Xiong X, Ding L, Xu Z (2016) Multifunctional nanocomposites between natural rubber and polyvinyl pyrrolidone modified graphene. Compos Part B Eng 84:121–129CrossRef
29.
go back to reference Liu M, Peng Q, Luo B, Zhou C (2015) The improvement of mechanical performance and water-response of carboxylated SBR by chitin nanocrystals. Eur Polym J 68:190–206CrossRef Liu M, Peng Q, Luo B, Zhou C (2015) The improvement of mechanical performance and water-response of carboxylated SBR by chitin nanocrystals. Eur Polym J 68:190–206CrossRef
30.
go back to reference Subramaniam K, Das A, Simon F, Heinrich G (2013) Networking of ionic liquid modified CNTs in SSBR. Eur Polym J 49:345–352CrossRef Subramaniam K, Das A, Simon F, Heinrich G (2013) Networking of ionic liquid modified CNTs in SSBR. Eur Polym J 49:345–352CrossRef
31.
go back to reference Scott MP, Brazel CS, Benton MG, Mays JW, Holbrey JD, Rogers RD (2002) Application of ionic liquids as plasticizers for poly(methyl methacrylate). Chem Commun 13:1370–1371CrossRef Scott MP, Brazel CS, Benton MG, Mays JW, Holbrey JD, Rogers RD (2002) Application of ionic liquids as plasticizers for poly(methyl methacrylate). Chem Commun 13:1370–1371CrossRef
32.
go back to reference Marzec A, Laskowska A, Boiteux G, Zaborski M, Gain O, Serghei A (2014) The impact of imidazolium ionic liquids on the properties of nitrile rubber composites. Eur Polym J 53:139–146CrossRef Marzec A, Laskowska A, Boiteux G, Zaborski M, Gain O, Serghei A (2014) The impact of imidazolium ionic liquids on the properties of nitrile rubber composites. Eur Polym J 53:139–146CrossRef
33.
go back to reference Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385CrossRef Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385CrossRef
34.
go back to reference Subramaniam K, Das A, Heinrich G (2011) Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Compos Sci Technol 71:1441–1449CrossRef Subramaniam K, Das A, Heinrich G (2011) Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Compos Sci Technol 71:1441–1449CrossRef
35.
go back to reference Patsidis AC, Kalaitzidou K, Psarras GC (2014) Graphite nanoplatelets/polymer nanocomposites: thermomechanical, dielectric, and functional behavior. J Therm Anal Calorim 116:41–49CrossRef Patsidis AC, Kalaitzidou K, Psarras GC (2014) Graphite nanoplatelets/polymer nanocomposites: thermomechanical, dielectric, and functional behavior. J Therm Anal Calorim 116:41–49CrossRef
36.
go back to reference Tian C, Du Y, Xu P, Qiang R, Wang Y, Ding D, Xue J, Ma J, Zhao H, Han X (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 7:20090–20099CrossRef Tian C, Du Y, Xu P, Qiang R, Wang Y, Ding D, Xue J, Ma J, Zhao H, Han X (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 7:20090–20099CrossRef
37.
go back to reference Karahaliou PK, Kerasidou AP, Georga SN, Psarras GC, Krontiras CA, Karger-Kocsis J (2014) Dielectric relaxations in polyoxymethylene and in related nanocomposites: identification and molecular dynamics. Polymer 55:6819–6826CrossRef Karahaliou PK, Kerasidou AP, Georga SN, Psarras GC, Krontiras CA, Karger-Kocsis J (2014) Dielectric relaxations in polyoxymethylene and in related nanocomposites: identification and molecular dynamics. Polymer 55:6819–6826CrossRef
38.
go back to reference Karahaliou PK, Svarnas P, Georga SN, Xanthopoulos NI, Delaportas D, Krontiras CA, Alexandrou I (2012) Cuo/Ta2O5 core/shell nanoparticles synthesized in immersed arc-discharge: production conditions and dielectric response. J Nanopart Res 14:1297CrossRef Karahaliou PK, Svarnas P, Georga SN, Xanthopoulos NI, Delaportas D, Krontiras CA, Alexandrou I (2012) Cuo/Ta2O5 core/shell nanoparticles synthesized in immersed arc-discharge: production conditions and dielectric response. J Nanopart Res 14:1297CrossRef
39.
go back to reference Zhang X, Dong X, Huang H, Liu Y, Wang W, Zhu X, Lv B, Lei J, Lee C (2006) Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl Phys Lett 89:053115CrossRef Zhang X, Dong X, Huang H, Liu Y, Wang W, Zhu X, Lv B, Lei J, Lee C (2006) Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl Phys Lett 89:053115CrossRef
40.
go back to reference Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944CrossRef Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944CrossRef
41.
go back to reference Agari Y, Ueda A, Omura Y, Nagai S (1997) Thermal diffusivity and conductivity of PMMA/PC blends. Polymer 38:801–807CrossRef Agari Y, Ueda A, Omura Y, Nagai S (1997) Thermal diffusivity and conductivity of PMMA/PC blends. Polymer 38:801–807CrossRef
42.
go back to reference Araby S, Meng Q, Zhang L, Kang H, Majewski P, Tang Y, Ma J (2014) Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55:201–210CrossRef Araby S, Meng Q, Zhang L, Kang H, Majewski P, Tang Y, Ma J (2014) Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55:201–210CrossRef
43.
go back to reference Zhou S, Xu J, Yang QH, Chiang S, Li B, Du H, Xu C, Kang F (2013) Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon 57:452–459CrossRef Zhou S, Xu J, Yang QH, Chiang S, Li B, Du H, Xu C, Kang F (2013) Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon 57:452–459CrossRef
44.
go back to reference Im H, Kim J (2012) Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite. Carbon 50:5429–5440CrossRef Im H, Kim J (2012) Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite. Carbon 50:5429–5440CrossRef
45.
go back to reference Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28CrossRef Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28CrossRef
46.
go back to reference Pradhan NR, Duan H, Liang J, Iannacchione GS (2009) The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology 20:245705CrossRef Pradhan NR, Duan H, Liang J, Iannacchione GS (2009) The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology 20:245705CrossRef
47.
go back to reference Giri A, Hopkins PE, Wessel JG, Duda JC (2015) Kapitza resistance and the thermal conductivity of amorphous superlattices. J Appl Phys 118:165303CrossRef Giri A, Hopkins PE, Wessel JG, Duda JC (2015) Kapitza resistance and the thermal conductivity of amorphous superlattices. J Appl Phys 118:165303CrossRef
Metadata
Title
Enhanced mechanical, dielectric, electrical and thermal conductive properties of HXNBR/HNBR blends filled with ionic liquid-modified multiwalled carbon nanotubes
Authors
Qing Yin
Yanwei Wen
Hongbing Jia
Liu Hong
Qingmin Ji
Zhaodong Xu
Publication date
05-06-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1251-y

Other articles of this Issue 18/2017

Journal of Materials Science 18/2017 Go to the issue

Premium Partners