Skip to main content
Top
Published in: Journal of Nanoparticle Research 12/2012

01-12-2012 | Research Paper

Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: the case of Ag2Te–PbTe

Authors: Doris Cadavid, Maria Ibáñez, Stéphane Gorsse, Antonio M. López, Albert Cirera, Joan Ramon Morante, Andreu Cabot

Published in: Journal of Nanoparticle Research | Issue 12/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanocomposites are highly promising materials to enhance the efficiency of current thermoelectric devices. A straightforward and at the same time highly versatile and controllable approach to produce nanocomposites is the assembly of solution-processed nanocrystal building blocks. The convenience of this bottom-up approach to produce nanocomposites with homogeneous phase distributions and adjustable composition is demonstrated here by blending Ag2Te and PbTe colloidal nanocrystals to form Ag2Te–PbTe bulk nanocomposites. The thermoelectric properties of these nanocomposites are analyzed in the temperature range from 300 to 700 K. The evolution of their electrical conductivity and Seebeck coefficient is discussed in terms of the blend composition and the characteristics of the constituent materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Notice that there is some controversy in the nomenclature of the different Ag2Te phases. We use α to denote the low-temperature Ag2Te phase and β for the high-temperature one.
 
Literature
go back to reference Allgaier RS (1961) Valence bands in lead telluride. J Appl Phys 32:2185–2189CrossRef Allgaier RS (1961) Valence bands in lead telluride. J Appl Phys 32:2185–2189CrossRef
go back to reference Bian Z, Zebarjadi M, Singh R et al (2007) Cross-plane Seebeck coefficient and Lorenz number in superlattices. Phys Rev B 76:205311CrossRef Bian Z, Zebarjadi M, Singh R et al (2007) Cross-plane Seebeck coefficient and Lorenz number in superlattices. Phys Rev B 76:205311CrossRef
go back to reference Borisova LD (1979) Thermoelectric properties of impurity doped PbTe. Physica Status Solidi (a) 53:K19–K22CrossRef Borisova LD (1979) Thermoelectric properties of impurity doped PbTe. Physica Status Solidi (a) 53:K19–K22CrossRef
go back to reference Breschi R, Camanzi A, Fano V (1982) Defects in PbTe single crystals. J Cryst Growth 58:399–408CrossRef Breschi R, Camanzi A, Fano V (1982) Defects in PbTe single crystals. J Cryst Growth 58:399–408CrossRef
go back to reference Bux SK, Fleurial J-P, Kaner RB (2010) Nanostructures materials for thermoelectric applications. Chem Comm 46:8311–8324CrossRef Bux SK, Fleurial J-P, Kaner RB (2010) Nanostructures materials for thermoelectric applications. Chem Comm 46:8311–8324CrossRef
go back to reference Cahill DG, Ford WK, Goodson KE et al (2003) Nanoscale thermal transport. J Appl Phys 93:793–818CrossRef Cahill DG, Ford WK, Goodson KE et al (2003) Nanoscale thermal transport. J Appl Phys 93:793–818CrossRef
go back to reference Capps J, Drymiotis F, Lindsey S, Tritt TM (2010) Significant enhanced of the dimensionless thermoelectric figure of merit binary Ag2Te. Phyl Mag Lett 90:677–681CrossRef Capps J, Drymiotis F, Lindsey S, Tritt TM (2010) Significant enhanced of the dimensionless thermoelectric figure of merit binary Ag2Te. Phyl Mag Lett 90:677–681CrossRef
go back to reference Capps J, Ma B, Drye T et al (2011) The effect of Ag concentration on the structural, electrical and thermal transport behavior of Pb:Te:Ag:Se mixtures and improvement of thermoelectric performance via Cu doping. J Alloy Compd 509:1544–1549CrossRef Capps J, Ma B, Drye T et al (2011) The effect of Ag concentration on the structural, electrical and thermal transport behavior of Pb:Te:Ag:Se mixtures and improvement of thermoelectric performance via Cu doping. J Alloy Compd 509:1544–1549CrossRef
go back to reference Cornett JE, Rabin O (2011) Thermoelectric figure of merit calculations for semiconducting nanowires. Appl Phys Lett 98:182104–182104–3 Cornett JE, Rabin O (2011) Thermoelectric figure of merit calculations for semiconducting nanowires. Appl Phys Lett 98:182104–182104–3
go back to reference Crocker AJ, Rogers LM (1967) Interpretation of the Hall coefficient, electrical resistivity and Seebeck coefficient of p-type lead telluride. Br J Appl Phys 18:563–573CrossRef Crocker AJ, Rogers LM (1967) Interpretation of the Hall coefficient, electrical resistivity and Seebeck coefficient of p-type lead telluride. Br J Appl Phys 18:563–573CrossRef
go back to reference Dalpian GM, Chelikowsky JR (2006) Self-purification in semiconductor nanocrystals. Phys Rev Lett 96:226802CrossRef Dalpian GM, Chelikowsky JR (2006) Self-purification in semiconductor nanocrystals. Phys Rev Lett 96:226802CrossRef
go back to reference Dalven R, Gill R (1967) Electrical properties of β-Ag2Te and β-Ag2Se from 4.2° to 300°K. J Appl Phys 38:753–756CrossRef Dalven R, Gill R (1967) Electrical properties of β-Ag2Te and β-Ag2Se from 4.2° to 300°K. J Appl Phys 38:753–756CrossRef
go back to reference Das VD, Karunakaran D (1984) Thermoelectric studies on semiconducting Ag2Te thin films: temperature and dimensional effects. Phys Rev B 30:2036–2041CrossRef Das VD, Karunakaran D (1984) Thermoelectric studies on semiconducting Ag2Te thin films: temperature and dimensional effects. Phys Rev B 30:2036–2041CrossRef
go back to reference Dashevsky Z, Kreizman R, Dariel MP (2005) Physical properties and inversion of conductivity type in nanocrystalline PbTe films. J Appl Phys 98:094309–094309–5 Dashevsky Z, Kreizman R, Dariel MP (2005) Physical properties and inversion of conductivity type in nanocrystalline PbTe films. J Appl Phys 98:094309–094309–5
go back to reference Dingle R, Störmer HL, Gossard AC, Wiegmann W (1978) Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl Phys Lett 33:665–667CrossRef Dingle R, Störmer HL, Gossard AC, Wiegmann W (1978) Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl Phys Lett 33:665–667CrossRef
go back to reference Dresselhaus MS, Chen G, Tang MY et al (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053CrossRef Dresselhaus MS, Chen G, Tang MY et al (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053CrossRef
go back to reference Erwin SC, Zu L, Haftel MI et al (2005) Doping semiconductor nanocrystals. Nature 436:91–94CrossRef Erwin SC, Zu L, Haftel MI et al (2005) Doping semiconductor nanocrystals. Nature 436:91–94CrossRef
go back to reference Faleev SV, Léonard F (2008) Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys Rev B 77:214304CrossRef Faleev SV, Léonard F (2008) Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys Rev B 77:214304CrossRef
go back to reference Feldman JL, Singh DJ, Mazin II, Mandrus D, Sales BC (2000) Lattice dynamics and reduced thermal conductivity of filled skutterudites. Phys Rev B 61:R9209–R9212CrossRef Feldman JL, Singh DJ, Mazin II, Mandrus D, Sales BC (2000) Lattice dynamics and reduced thermal conductivity of filled skutterudites. Phys Rev B 61:R9209–R9212CrossRef
go back to reference Fujikane M, Kurosaki K, Muta H, Yamanaka S (2005a) Thermoelectric properties of α- and β-Ag2Te. J Alloy Compd 393:299–301CrossRef Fujikane M, Kurosaki K, Muta H, Yamanaka S (2005a) Thermoelectric properties of α- and β-Ag2Te. J Alloy Compd 393:299–301CrossRef
go back to reference Fujikane M, Kurosaki K, Muta H, Yamanaka S (2005b) Electrical properties of α- and β-Ag2Te. J Alloy Compd 387:297–299CrossRef Fujikane M, Kurosaki K, Muta H, Yamanaka S (2005b) Electrical properties of α- and β-Ag2Te. J Alloy Compd 387:297–299CrossRef
go back to reference Gascoin F, Ottensmann S, Stark D, Haile SM, Snyder GJ (2005) Zintl phases as thermoelectric materials: tuned transport properties of the compounds CaxYb1-xZn2Sb2. Adv Funct Mater 15:1860–1864CrossRef Gascoin F, Ottensmann S, Stark D, Haile SM, Snyder GJ (2005) Zintl phases as thermoelectric materials: tuned transport properties of the compounds CaxYb1-xZn2Sb2. Adv Funct Mater 15:1860–1864CrossRef
go back to reference Goldsmid H, Sharp J (1999) Estimation of the thermal band gap of a semiconductor from seebeck measurements. J Electron Mater 28:869–872CrossRef Goldsmid H, Sharp J (1999) Estimation of the thermal band gap of a semiconductor from seebeck measurements. J Electron Mater 28:869–872CrossRef
go back to reference Gorsse S, Bauer Pereira P, Decourt R, Sellier E (2010) Microstructure engineering design for thermoelectric materials: an approach to minimize thermal diffusivity. Chem Mater 22:988–993CrossRef Gorsse S, Bauer Pereira P, Decourt R, Sellier E (2010) Microstructure engineering design for thermoelectric materials: an approach to minimize thermal diffusivity. Chem Mater 22:988–993CrossRef
go back to reference Gorsse S, Bellanger P, Brechet Y, Sellier E, Umarji A, Ail U, Decourt R (2011) Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys. Acta Mater 59:7425–7437CrossRef Gorsse S, Bellanger P, Brechet Y, Sellier E, Umarji A, Ail U, Decourt R (2011) Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys. Acta Mater 59:7425–7437CrossRef
go back to reference Grekov Y, Shlyakhov T, Semikolenova N (1997) Inversion of the conduction type of epitaxial films of PbSnTe solid solutions under the influence of laser irradiation at subthreshold power. Semiconductors 31:844–846CrossRef Grekov Y, Shlyakhov T, Semikolenova N (1997) Inversion of the conduction type of epitaxial films of PbSnTe solid solutions under the influence of laser irradiation at subthreshold power. Semiconductors 31:844–846CrossRef
go back to reference Heremans JP, Thrush CM, Morelli DT (2004) Thermopower enhancement in lead telluride nanostructures. Phys Rev B 70:115334CrossRef Heremans JP, Thrush CM, Morelli DT (2004) Thermopower enhancement in lead telluride nanostructures. Phys Rev B 70:115334CrossRef
go back to reference Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731CrossRef Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731CrossRef
go back to reference Hsu KF, Loo S, Guo F et al (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–821CrossRef Hsu KF, Loo S, Guo F et al (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–821CrossRef
go back to reference Humphrey TE, Linke H (2005) Reversible thermoelectric nanomaterials. Phys Rev Lett 94:096601CrossRef Humphrey TE, Linke H (2005) Reversible thermoelectric nanomaterials. Phys Rev Lett 94:096601CrossRef
go back to reference Ibáñez M, Guardia P, Shavel A et al (2011) Growth kinetics of asymmetric Bi2S3 nanocrystals: size distribution focusing in nanorods. J Phys Chem C 115:7947–7955CrossRef Ibáñez M, Guardia P, Shavel A et al (2011) Growth kinetics of asymmetric Bi2S3 nanocrystals: size distribution focusing in nanorods. J Phys Chem C 115:7947–7955CrossRef
go back to reference Ibáñez M, Cadavid D, Zamani R et al (2012a) Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: the case of stannite Cu2CdSnSe4. Chem Mater 24:562–570CrossRef Ibáñez M, Cadavid D, Zamani R et al (2012a) Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: the case of stannite Cu2CdSnSe4. Chem Mater 24:562–570CrossRef
go back to reference Ibáñez M, Zamani R, LaLonde A et al (2012b) Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. J Am Chem Soc 134:4060–4063CrossRef Ibáñez M, Zamani R, LaLonde A et al (2012b) Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. J Am Chem Soc 134:4060–4063CrossRef
go back to reference Ibáñez M, Zamani R, Li W, Shavel A, Arbiol J, Morante JR, Cabot A (2012c) Extending the nanocrystal synthesis control to quaternary compositions. Cryst Growth Des 12:1085–1090CrossRef Ibáñez M, Zamani R, Li W, Shavel A, Arbiol J, Morante JR, Cabot A (2012c) Extending the nanocrystal synthesis control to quaternary compositions. Cryst Growth Des 12:1085–1090CrossRef
go back to reference Ko D-K, Urban JJ, Murray CB (2010) Carrier distribution and dynamics of nanocrystal solids doped with artificial atoms. Nano Lett 10:1842–1847CrossRef Ko D-K, Urban JJ, Murray CB (2010) Carrier distribution and dynamics of nanocrystal solids doped with artificial atoms. Nano Lett 10:1842–1847CrossRef
go back to reference Kovalenko MV, Spokoyny B, Lee J-S et al (2010) Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. J Am Chem Soc 132:6686–6695CrossRef Kovalenko MV, Spokoyny B, Lee J-S et al (2010) Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. J Am Chem Soc 132:6686–6695CrossRef
go back to reference Lan Y, Minnich AJ, Chen G, Ren Z (2010) Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv Funct Mater 20:357–376CrossRef Lan Y, Minnich AJ, Chen G, Ren Z (2010) Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv Funct Mater 20:357–376CrossRef
go back to reference Lensch-Falk JL, Sugar JD, Hekmaty MA, Medlin DL (2010) Morphological evolution of Ag2Te precipitates in thermoelectric PbTe. J Alloy Compd 504:37–44CrossRef Lensch-Falk JL, Sugar JD, Hekmaty MA, Medlin DL (2010) Morphological evolution of Ag2Te precipitates in thermoelectric PbTe. J Alloy Compd 504:37–44CrossRef
go back to reference Li W, Shavel A, Guzman R et al (2011) Morphology evolution of Cu2 − xS nanoparticles: from spheres to dodecahedrons. Chem Commun 47:10332CrossRef Li W, Shavel A, Guzman R et al (2011) Morphology evolution of Cu2 − xS nanoparticles: from spheres to dodecahedrons. Chem Commun 47:10332CrossRef
go back to reference Martin J, Nolas GS, Zhang W, Chen L (2007) PbTe nanocomposites synthesized from PbTe nanocrystals. Appl Phys Lett 90:222112CrossRef Martin J, Nolas GS, Zhang W, Chen L (2007) PbTe nanocomposites synthesized from PbTe nanocrystals. Appl Phys Lett 90:222112CrossRef
go back to reference Martin J, Wang L, Chen L, Nolas GS (2009) Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys Rev B 79:115311CrossRef Martin J, Wang L, Chen L, Nolas GS (2009) Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys Rev B 79:115311CrossRef
go back to reference Max-Planck-Gesellschaft zur Förderung der Wissenschaften (1973) Gmelin Handbuch der anorganischen Chemie, 8. völlig neu bearbeitete Aufl. Springer, Berlin Max-Planck-Gesellschaft zur Förderung der Wissenschaften (1973) Gmelin Handbuch der anorganischen Chemie, 8. völlig neu bearbeitete Aufl. Springer, Berlin
go back to reference Medlin DL, Snyder GJ (2009) Interfaces in bulk thermoelectric materials: a review for current opinion in colloid and interface science. Curr Opin Colloid Interface Sci 14:226–235CrossRef Medlin DL, Snyder GJ (2009) Interfaces in bulk thermoelectric materials: a review for current opinion in colloid and interface science. Curr Opin Colloid Interface Sci 14:226–235CrossRef
go back to reference Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479CrossRef Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479CrossRef
go back to reference Norris DJ, Efros AL, Erwin SC (2008) Doped nanocrystals. Science 319:1776–1779CrossRef Norris DJ, Efros AL, Erwin SC (2008) Doped nanocrystals. Science 319:1776–1779CrossRef
go back to reference Paul B, Banerji PJ (2011) Enhancement in thermoelectric power in lead telluride nanocomposite: role of oxygen vis-à-vis nanostruct. Nano Electron Phys 3:691–697 Paul B, Banerji PJ (2011) Enhancement in thermoelectric power in lead telluride nanocomposite: role of oxygen vis-à-vis nanostruct. Nano Electron Phys 3:691–697
go back to reference Paul B, Kumar VA, Banerji P (2010) Embedded Ag-rich nanodots in PbTe: enhancement of thermoelectric properties through energy filtering of the carriers. J Appl Phys 108:064322CrossRef Paul B, Kumar VA, Banerji P (2010) Embedded Ag-rich nanodots in PbTe: enhancement of thermoelectric properties through energy filtering of the carriers. J Appl Phys 108:064322CrossRef
go back to reference Pei Y, Heinz NA, Snyder GJ (2011a) Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. J Mater Chem 21:18256CrossRef Pei Y, Heinz NA, Snyder GJ (2011a) Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. J Mater Chem 21:18256CrossRef
go back to reference Pei Y, Lensch-Falk J, Toberer ES, Medlin DL, Snyder GJ (2011b) High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv Funct Mater 21:241–249CrossRef Pei Y, Lensch-Falk J, Toberer ES, Medlin DL, Snyder GJ (2011b) High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv Funct Mater 21:241–249CrossRef
go back to reference Popescu A, Woods LM, Martin J, Nolas GS (2009) Model of transport properties of thermoelectric nanocomposite materials. Phys Rev B 79:205302CrossRef Popescu A, Woods LM, Martin J, Nolas GS (2009) Model of transport properties of thermoelectric nanocomposite materials. Phys Rev B 79:205302CrossRef
go back to reference Poudel B, Hao Q, Ma Y et al (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638CrossRef Poudel B, Hao Q, Ma Y et al (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638CrossRef
go back to reference Prasher R (2006) Ultralow thermal conductivity of a packed bed of crystalline nanoparticles: a theoretical study. Phys Rev B 74:165413CrossRef Prasher R (2006) Ultralow thermal conductivity of a packed bed of crystalline nanoparticles: a theoretical study. Phys Rev B 74:165413CrossRef
go back to reference Quarez E, Hsu K-F, Pcionek R, Frangis N, Polychroniadis EK, Kanatzidis MG (2005) Nanostructuring compositional fluctuations and atomic ordering in the thermoelectric materials AgPbmSbTe2+m the myth of solid solutions. J Am Chem Soc 127:9177–9190CrossRef Quarez E, Hsu K-F, Pcionek R, Frangis N, Polychroniadis EK, Kanatzidis MG (2005) Nanostructuring compositional fluctuations and atomic ordering in the thermoelectric materials AgPbmSbTe2+m the myth of solid solutions. J Am Chem Soc 127:9177–9190CrossRef
go back to reference Rogacheva EI, Krivulkin IM, Nashchekina ON, Sipatov AYu, Volobuev VV, Dresselhaus MS (2001) Effect of oxidation on the thermoelectric properties of PbTe and PbS epitaxial films. Appl Phys Lett 78:1661–1663CrossRef Rogacheva EI, Krivulkin IM, Nashchekina ON, Sipatov AYu, Volobuev VV, Dresselhaus MS (2001) Effect of oxidation on the thermoelectric properties of PbTe and PbS epitaxial films. Appl Phys Lett 78:1661–1663CrossRef
go back to reference Sakuma T, Saitoh S (1985) Structure of α-Ag2Te. J Phys Soc Jpn 54:3647–3648CrossRef Sakuma T, Saitoh S (1985) Structure of α-Ag2Te. J Phys Soc Jpn 54:3647–3648CrossRef
go back to reference Scanlon W (1962) Precipitation of Te and Pb in PbTe crystals. Phys Rev 126:509–513CrossRef Scanlon W (1962) Precipitation of Te and Pb in PbTe crystals. Phys Rev 126:509–513CrossRef
go back to reference Scheele M, Oeschler N, Meier K, Kornowski A, Klinke C, Weller H (2009) Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv Funct Mater 19:3476–3483CrossRef Scheele M, Oeschler N, Meier K, Kornowski A, Klinke C, Weller H (2009) Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv Funct Mater 19:3476–3483CrossRef
go back to reference Scheele M, Oeschler N, Veremchuk I, Reinsberg K-G, Kreuziger A-M, Kornowski A, Broekaert J, Klinke C, Weller H (2010) ZT enhancement in solution-grown Sb(2-x)BixTe3 nanoplates. ACS Nano 4:4283–4291CrossRef Scheele M, Oeschler N, Veremchuk I, Reinsberg K-G, Kreuziger A-M, Kornowski A, Broekaert J, Klinke C, Weller H (2010) ZT enhancement in solution-grown Sb(2-x)BixTe3 nanoplates. ACS Nano 4:4283–4291CrossRef
go back to reference Scheele M, Oeschler N, Veremchuk I et al (2011) Thermoelectric properties of lead chalcogenide core–shell nanostructures. ACS Nano 5:8541–8551CrossRef Scheele M, Oeschler N, Veremchuk I et al (2011) Thermoelectric properties of lead chalcogenide core–shell nanostructures. ACS Nano 5:8541–8551CrossRef
go back to reference Schenk M, Berger H, Klimakow A, Mühlberg M, Wienecke M (1988) Nonstoichiometry and point defects in PbTe. Cryst Res Technol 23:77–84CrossRef Schenk M, Berger H, Klimakow A, Mühlberg M, Wienecke M (1988) Nonstoichiometry and point defects in PbTe. Cryst Res Technol 23:77–84CrossRef
go back to reference Schneider J, Schulz H (1993) X-ray powder diffraction of Ag2Te at temperatures up to 1123 K. Z Kristallogr 203:1–15CrossRef Schneider J, Schulz H (1993) X-ray powder diffraction of Ag2Te at temperatures up to 1123 K. Z Kristallogr 203:1–15CrossRef
go back to reference Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114CrossRef Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114CrossRef
go back to reference Sootsman JR, Kong H, Uher C et al (2008) Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew Chem 120:8746–8750CrossRef Sootsman JR, Kong H, Uher C et al (2008) Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew Chem 120:8746–8750CrossRef
go back to reference Szczech JR, Higgins JM, Jin S (2011) Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J Mater Chem 21:4037–4055CrossRef Szczech JR, Higgins JM, Jin S (2011) Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J Mater Chem 21:4037–4055CrossRef
go back to reference Taylor PF, Wood C (1961) Thermoelectric properties of Ag2Te. J Appl Phys 32:1–3CrossRef Taylor PF, Wood C (1961) Thermoelectric properties of Ag2Te. J Appl Phys 32:1–3CrossRef
go back to reference Urban JJ, Talapin DV, Shevchenko EV, Murray CB (2006) Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. J Am Chem Soc 128:3248–3255CrossRef Urban JJ, Talapin DV, Shevchenko EV, Murray CB (2006) Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. J Am Chem Soc 128:3248–3255CrossRef
go back to reference Urban JJ, Talapin DV, Shevchenko EV et al (2007) Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat Mater 6:115–121CrossRef Urban JJ, Talapin DV, Shevchenko EV et al (2007) Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat Mater 6:115–121CrossRef
go back to reference Van Dong N, Tung PN (1968) Transport properties of silver telluride in the solid and liquid states. Physica status solidi (b) 30:557–567CrossRef Van Dong N, Tung PN (1968) Transport properties of silver telluride in the solid and liquid states. Physica status solidi (b) 30:557–567CrossRef
go back to reference Vaqueiro P, Powell AV (2010) Recent developments in nanostructured materials for high-performance thermoelectrics. J Mater Chem 20:9577CrossRef Vaqueiro P, Powell AV (2010) Recent developments in nanostructured materials for high-performance thermoelectrics. J Mater Chem 20:9577CrossRef
go back to reference Vashaee D, Shakouri A (2004) Improved thermoelectric power factor in metal-based superlattices. Phys Rev Lett 92:106103CrossRef Vashaee D, Shakouri A (2004) Improved thermoelectric power factor in metal-based superlattices. Phys Rev Lett 92:106103CrossRef
go back to reference Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22:3970–3980CrossRef Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22:3970–3980CrossRef
go back to reference Wang RY, Feser JP, Lee J-S et al (2008) Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett 8:2283–2288CrossRef Wang RY, Feser JP, Lee J-S et al (2008) Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett 8:2283–2288CrossRef
go back to reference Wood C, Harrap V, Kane WM (1961) Degeneracy in Ag2Te. Phys Rev 121:978–982CrossRef Wood C, Harrap V, Kane WM (1961) Degeneracy in Ag2Te. Phys Rev 121:978–982CrossRef
go back to reference Zebarjadi M, Joshi G, Zhu G et al (2011) Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett 11:2225–2230CrossRef Zebarjadi M, Joshi G, Zhu G et al (2011) Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett 11:2225–2230CrossRef
go back to reference Zebarjadi M, Esfarjani K, Dresselhaus MS et al (2012) Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 5:5147CrossRef Zebarjadi M, Esfarjani K, Dresselhaus MS et al (2012) Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 5:5147CrossRef
go back to reference Zemel JN, Jensen JD, Schoolar RB (1965) Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe. Phys Rev 140:A330–A342CrossRef Zemel JN, Jensen JD, Schoolar RB (1965) Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe. Phys Rev 140:A330–A342CrossRef
go back to reference Zhao Y, Dyck JS, Burda C (2011) Toward high-performance nanostructured thermoelectric materials: the progress of bottom-up solution chemistry approaches. J Mater Chem 21:17049CrossRef Zhao Y, Dyck JS, Burda C (2011) Toward high-performance nanostructured thermoelectric materials: the progress of bottom-up solution chemistry approaches. J Mater Chem 21:17049CrossRef
Metadata
Title
Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: the case of Ag2Te–PbTe
Authors
Doris Cadavid
Maria Ibáñez
Stéphane Gorsse
Antonio M. López
Albert Cirera
Joan Ramon Morante
Andreu Cabot
Publication date
01-12-2012
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 12/2012
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1328-0

Other articles of this Issue 12/2012

Journal of Nanoparticle Research 12/2012 Go to the issue

Premium Partners