Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 11/2019

28-06-2019 | Research Article - Computer Engineering and Computer Science

Brain Tumor Detection and Segmentation in MR Images Using Deep Learning

Authors: Sidra Sajid, Saddam Hussain, Amna Sarwar

Published in: Arabian Journal for Science and Engineering | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Gliomas are the most infiltrative and life-threatening brain tumors with exceptionally quick development. Gliomas segmentation using computer-aided diagnosis is a challenging task, due to irregular shape and diffused boundaries of tumor with the surrounding area. Magnetic resonance imaging (MRI) is the most widely used method for imaging structures of interest in human brain. In this study, a deep learning-based method that uses different modalities of MRI is presented for the segmentation of brain tumor. The proposed hybrid convolutional neural network architecture uses patch-based approach and takes both local and contextual information into account, while predicting output label. The proposed network deals with over-fitting problem by utilizing dropout regularizer alongside batch normalization, whereas data imbalance problem is dealt with by using two-phase training procedure. The proposed method contains a preprocessing step, in which images are normalized and bias field corrected, a feed-forward pass through a CNN and a post-processing step, which is used to remove small false positives around the skull portion. The proposed method is validated on BRATS 2013 dataset, where it achieves scores of 0.86, 0.86 and 0.91 in terms of dice score, sensitivity and specificity for whole tumor region, improving results compared to the state-of-the-art techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)CrossRef Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)CrossRef
2.
go back to reference Bauer, S.; Wiest, R.; Nolte, L.-P.; Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)CrossRef Bauer, S.; Wiest, R.; Nolte, L.-P.; Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)CrossRef
3.
go back to reference Rousseau, A.; Mokhtari, K.; Duyckaerts, C.: The 2007 who classification of tumors of the central nervous system—what has changed? Curr. Opin. Neurol. 21(6), 720–727 (2008)CrossRef Rousseau, A.; Mokhtari, K.; Duyckaerts, C.: The 2007 who classification of tumors of the central nervous system—what has changed? Curr. Opin. Neurol. 21(6), 720–727 (2008)CrossRef
4.
go back to reference Tabatabai, G.; Stupp, R.; van den Bent, M.J.; Hegi, M.E.; Tonn, J.C.; Wick, W.; Weller, M.: Molecular diagnostics of gliomas: the clinical perspective. Acta Neuropathol. 120(5), 585–592 (2010)CrossRef Tabatabai, G.; Stupp, R.; van den Bent, M.J.; Hegi, M.E.; Tonn, J.C.; Wick, W.; Weller, M.: Molecular diagnostics of gliomas: the clinical perspective. Acta Neuropathol. 120(5), 585–592 (2010)CrossRef
5.
go back to reference Zhao, X.; Yihong, W.; Song, G.; Li, Z.; Zhang, Y.; Fan, Y.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)CrossRef Zhao, X.; Yihong, W.; Song, G.; Li, Z.; Zhang, Y.; Fan, Y.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)CrossRef
6.
go back to reference Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.-M.; Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRef Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.-M.; Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRef
7.
go back to reference Abbasi, S.; Pour, F.T.: A hybrid approach for detection of brain tumor in MRI images. In: 2014 21th Iranian Conference on Biomedical Engineering (ICBME), pp. 269–274 (2014) Abbasi, S.; Pour, F.T.: A hybrid approach for detection of brain tumor in MRI images. In: 2014 21th Iranian Conference on Biomedical Engineering (ICBME), pp. 269–274 (2014)
8.
go back to reference Kao, P.-Y.; Ngo, T.; Zhang, A.; Chen, J.; Manjunath, B.S.: Brain tumor segmentation and tractographic feature extraction from structural MR images for overall survival prediction (2018). arXiv preprint arXiv:1807.07716 Kao, P.-Y.; Ngo, T.; Zhang, A.; Chen, J.; Manjunath, B.S.: Brain tumor segmentation and tractographic feature extraction from structural MR images for overall survival prediction (2018). arXiv preprint arXiv:​1807.​07716
10.
go back to reference Hussain, S.; Anwar, S.M.; Muhammad, M.: Brain tumor segmentation using cascaded deep convolutional neural network. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1998–2001 (2017) Hussain, S.; Anwar, S.M.; Muhammad, M.: Brain tumor segmentation using cascaded deep convolutional neural network. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1998–2001 (2017)
11.
go back to reference Menze, BH.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; Lanczi, L.; Gerstner, E.; Weber, M.A.; Arbel, T.; Avants, B.B.; Ayache, N.; Buendia, P.; Collins, D.L.; Cordier, N.; Corso, J.J.; Criminisi, A.; Das, T.; Delingette, H.; Demiralp, Ç.; Durst, C.R.; Dojat, M.; Doyle, S.; Festa, J.; Forbes, F.; Geremia, E.; Glocker, B.; Golland, P.; Guo, X.; Hamamci, A.; Iftekharuddin, K.M.; Jena, R.; John, N.M.; Konukoglu, E.; Lashkari, D.; Mariz, J.A.; Meier, R.; Pereira, S.; Precup, D.; Price, S.J.; Raviv, T.R.; Reza, S.M.; Ryan, M.; Sarikaya, D.; Schwartz, L.; Shin, H.C.; Shotton, J.; Silva, C.A.; Sousa, N.; Subbanna, N.K.; Szekely, G.; Taylor, T.J.; Thomas, O.M.; Tustison, N.J.; Unal, G.; Vasseur, F.; Wintermark, M.; Ye, D.H.; Zhao, L.; Zhao, B.; Zikic, D.; Prastawa, M.; Reyes, M.; Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging. 34(10), 1993–2024 (2015) Menze, BH.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; Lanczi, L.; Gerstner, E.; Weber, M.A.; Arbel, T.; Avants, B.B.; Ayache, N.; Buendia, P.; Collins, D.L.; Cordier, N.; Corso, J.J.; Criminisi, A.; Das, T.; Delingette, H.; Demiralp, Ç.; Durst, C.R.; Dojat, M.; Doyle, S.; Festa, J.; Forbes, F.; Geremia, E.; Glocker, B.; Golland, P.; Guo, X.; Hamamci, A.; Iftekharuddin, K.M.; Jena, R.; John, N.M.; Konukoglu, E.; Lashkari, D.; Mariz, J.A.; Meier, R.; Pereira, S.; Precup, D.; Price, S.J.; Raviv, T.R.; Reza, S.M.; Ryan, M.; Sarikaya, D.; Schwartz, L.; Shin, H.C.; Shotton, J.; Silva, C.A.; Sousa, N.; Subbanna, N.K.; Szekely, G.; Taylor, T.J.; Thomas, O.M.; Tustison, N.J.; Unal, G.; Vasseur, F.; Wintermark, M.; Ye, D.H.; Zhao, L.; Zhao, B.; Zikic, D.; Prastawa, M.; Reyes, M.; Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging. 34(10), 1993–2024 (2015)
12.
go back to reference Bernal, J.; Kushibar, K.; Asfaw, D.S.; Valverde, S.; Oliver, A.; Martí, R.; Lladó, X.: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif. Intell. Med. 95, 64–81 (2018)CrossRef Bernal, J.; Kushibar, K.; Asfaw, D.S.; Valverde, S.; Oliver, A.; Martí, R.; Lladó, X.: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif. Intell. Med. 95, 64–81 (2018)CrossRef
13.
go back to reference Pinto, A.; Pereira, S.; Correia, H.; Oliveira, J.; Rasteiro, D.; Silva, C.A.: Brain tumour segmentation based on extremely randomized forest with high-level features. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3037–3040 (2015) Pinto, A.; Pereira, S.; Correia, H.; Oliveira, J.; Rasteiro, D.; Silva, C.A.: Brain tumour segmentation based on extremely randomized forest with high-level features. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3037–3040 (2015)
14.
go back to reference Doyle, S.; Vasseur, F.; Dojat, M.; Forbes, F.: Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM. Proc. NCI-MICCAI BRATS 1, 18–22 (2013) Doyle, S.; Vasseur, F.; Dojat, M.; Forbes, F.: Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM. Proc. NCI-MICCAI BRATS 1, 18–22 (2013)
15.
go back to reference Prastawa, M.; Bullitt, E.; Ho, S.; Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)CrossRef Prastawa, M.; Bullitt, E.; Ho, S.; Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)CrossRef
16.
go back to reference Prastawa, M.; Bullitt, E.; Ho, S.; Gerig, G.: Robust estimation for brain tumor segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 530–537. Springer, New York (2003) Prastawa, M.; Bullitt, E.; Ho, S.; Gerig, G.: Robust estimation for brain tumor segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 530–537. Springer, New York (2003)
17.
go back to reference Khotanlou, H.; Colliot, O.; Atif, J.; Bloch, I.: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160(10), 1457–1473 (2009)MathSciNetCrossRef Khotanlou, H.; Colliot, O.; Atif, J.; Bloch, I.: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160(10), 1457–1473 (2009)MathSciNetCrossRef
18.
go back to reference Popuri, K.; Cobzas, D.; Murtha, A.; Jägersand, M.: 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set. Int. J. Comput. Assist. Radiol. Surg. 7(4), 493–506 (2012)CrossRef Popuri, K.; Cobzas, D.; Murtha, A.; Jägersand, M.: 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set. Int. J. Comput. Assist. Radiol. Surg. 7(4), 493–506 (2012)CrossRef
19.
go back to reference Kwon, D; Akbari, H; Da, X; Gaonkar, B; Davatzikos, C.: Multimodal brain tumor image segmentation using GLISTR. MICCAI Brain Tumor Segmentation (BraTS) Challenge Manuscripts, pp. 18–19 (2014) Kwon, D; Akbari, H; Da, X; Gaonkar, B; Davatzikos, C.: Multimodal brain tumor image segmentation using GLISTR. MICCAI Brain Tumor Segmentation (BraTS) Challenge Manuscripts, pp. 18–19 (2014)
20.
go back to reference Parisot, Sarah; Duffau, Hugues; Chemouny, Stéphane; Paragios, Nikos.: Joint tumor segmentation and dense deformable registration of brain MR images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 651–658. Springer, New York (2012) Parisot, Sarah; Duffau, Hugues; Chemouny, Stéphane; Paragios, Nikos.: Joint tumor segmentation and dense deformable registration of brain MR images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 651–658. Springer, New York (2012)
21.
go back to reference Hamamci, A.; Kucuk, N.; Karaman, K.; Engin, K.; Unal, G.: Tumor-cut: segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications. IEEE Trans. Med. Imaging 31(3), 790–804 (2012)CrossRef Hamamci, A.; Kucuk, N.; Karaman, K.; Engin, K.; Unal, G.: Tumor-cut: segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications. IEEE Trans. Med. Imaging 31(3), 790–804 (2012)CrossRef
22.
go back to reference Kleesiek, J.; Biller, A.; Urban, G.; Kothe, U.; Bendszus, M.; Hamprecht, F.: Ilastik for multi-modal brain tumor segmentation. In: Proceedings of MICCAI 2013 Challenge on Multimodal Brain Tumor Segmentation (BRATS 2013) (2014) Kleesiek, J.; Biller, A.; Urban, G.; Kothe, U.; Bendszus, M.; Hamprecht, F.: Ilastik for multi-modal brain tumor segmentation. In: Proceedings of MICCAI 2013 Challenge on Multimodal Brain Tumor Segmentation (BRATS 2013) (2014)
23.
go back to reference Subbanna, N.; Precup, D.; Arbel, T.: Iterative multilevel MRF leveraging context and voxel information for brain tumour segmentation in MRI. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 400–405 (2014). Subbanna, N.; Precup, D.; Arbel, T.: Iterative multilevel MRF leveraging context and voxel information for brain tumour segmentation in MRI. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 400–405 (2014).
24.
go back to reference Webb, J.; Guimond, A.; Eldridge, P.; Chadwick, D.; Meunier, J.; Thirion, J.-P.; Roberts, N.: Automatic detection of hippocampal atrophy on magnetic resonance images. Magn. Reson. Imaging 17(8), 1149–1161 (1999)CrossRef Webb, J.; Guimond, A.; Eldridge, P.; Chadwick, D.; Meunier, J.; Thirion, J.-P.; Roberts, N.: Automatic detection of hippocampal atrophy on magnetic resonance images. Magn. Reson. Imaging 17(8), 1149–1161 (1999)CrossRef
25.
go back to reference Smith, S.M.; Jenkinson, M.; Johansen-Berg, H.; Rueckert, D.; Nichols, T.E.; Mackay, C.E.; Watkins, K.E.; Ciccarelli, O.; Cader, M.Z.; Matthews, P.M.; et al.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4), 1487–1505 (2006)CrossRef Smith, S.M.; Jenkinson, M.; Johansen-Berg, H.; Rueckert, D.; Nichols, T.E.; Mackay, C.E.; Watkins, K.E.; Ciccarelli, O.; Cader, M.Z.; Matthews, P.M.; et al.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4), 1487–1505 (2006)CrossRef
26.
go back to reference Binaghi, E.; Omodei, M.; Pedoia, V.; Balbi, S.; Lattanzi, D.; Monti, E..: Automatic segmentation of MR brain tumor images using support vector machine in combination with graph cut. In: IJCCI (NCTA), pp. 152–157 (2014) Binaghi, E.; Omodei, M.; Pedoia, V.; Balbi, S.; Lattanzi, D.; Monti, E..: Automatic segmentation of MR brain tumor images using support vector machine in combination with graph cut. In: IJCCI (NCTA), pp. 152–157 (2014)
27.
go back to reference Sikka, K.; Sinha, N.; Singh, P.K.; Mishra, A.K.: A fully automated algorithm under modified FCM framework for improved brain MR image segmentation. Magn. Reson. Imaging 27(7), 994–1004 (2009)CrossRef Sikka, K.; Sinha, N.; Singh, P.K.; Mishra, A.K.: A fully automated algorithm under modified FCM framework for improved brain MR image segmentation. Magn. Reson. Imaging 27(7), 994–1004 (2009)CrossRef
28.
go back to reference Zikic, D.; Glocker, B.; Konukoglu, E.; Criminisi, A.; Demiralp, C.; Shotton, J.; Thomas, O.; Das, T.; Jena, R.; Price, S.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012, pp. 369–376 (2012) Zikic, D.; Glocker, B.; Konukoglu, E.; Criminisi, A.; Demiralp, C.; Shotton, J.; Thomas, O.; Das, T.; Jena, R.; Price, S.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012, pp. 369–376 (2012)
29.
go back to reference Gotz, M.; Weber, C.; Blocher, J.; Stieltjes, B.; Meinzer, H.-P.; Maier-Hein, K.: Extremely randomized trees based brain tumor segmentation. In: Proceedings of BRATS Challenge-MICCAI (2014) Gotz, M.; Weber, C.; Blocher, J.; Stieltjes, B.; Meinzer, H.-P.; Maier-Hein, K.: Extremely randomized trees based brain tumor segmentation. In: Proceedings of BRATS Challenge-MICCAI (2014)
30.
go back to reference Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRef Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRef
31.
go back to reference Bauer, S.; Nolte, L.-P.; Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 354–361. Springer, New York (2011). Bauer, S.; Nolte, L.-P.; Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 354–361. Springer, New York (2011).
32.
go back to reference Yang, J.; Zhang, D.; Frangi, A.F.; Yang, J.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)CrossRef Yang, J.; Zhang, D.; Frangi, A.F.; Yang, J.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)CrossRef
33.
go back to reference Urban, G.; Bendszus, M.; Hamprecht, F.; Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: Proceedings of BRATS-MICCAI (2014) Urban, G.; Bendszus, M.; Hamprecht, F.; Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: Proceedings of BRATS-MICCAI (2014)
34.
go back to reference Beers, A.; Chang, K.; Brown, J.; Sartor, E.; Mammen, C.P.; Gerstner, E.; Rosen, B.; Kalpathy-Cramer, J.: Sequential 3D U-nets for biologically-informed brain tumor segmentation (2017). arXiv preprint arXiv:1709.02967 Beers, A.; Chang, K.; Brown, J.; Sartor, E.; Mammen, C.P.; Gerstner, E.; Rosen, B.; Kalpathy-Cramer, J.: Sequential 3D U-nets for biologically-informed brain tumor segmentation (2017). arXiv preprint arXiv:​1709.​02967
35.
go back to reference Zikic, D.; Ioannou, Y.; Brown, M.; Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS, pp. 36–39 (2014) Zikic, D.; Ioannou, Y.; Brown, M.; Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS, pp. 36–39 (2014)
36.
go back to reference Hu, J.; Mou, L.; Schmitt, A.; Zhu, X.X.: Fusionet: a two-stream convolutional neural network for urban scene classification using polsar and hyperspectral data. In: Urban Remote Sensing Event (JURSE), 2017 Joint, pp. 1–4 (2017) Hu, J.; Mou, L.; Schmitt, A.; Zhu, X.X.: Fusionet: a two-stream convolutional neural network for urban scene classification using polsar and hyperspectral data. In: Urban Remote Sensing Event (JURSE), 2017 Joint, pp. 1–4 (2017)
37.
go back to reference Hou, L.; Samaras, D.; Kurc, T.M.; Gao, Y.; Davis, J.E.; Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016) Hou, L.; Samaras, D.; Kurc, T.M.; Gao, Y.; Davis, J.E.; Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016)
38.
go back to reference Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs (2016). arXiv preprint arXiv:1606.00915 Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs (2016). arXiv preprint arXiv:​1606.​00915
39.
go back to reference Jiang, J.; Yao, W.; Huang, M.; Yang, W.; Chen, W.; Feng, Q.: 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets. Comput. Med. Imaging Graph. 37(7), 512–521 (2013)CrossRef Jiang, J.; Yao, W.; Huang, M.; Yang, W.; Chen, W.; Feng, Q.: 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets. Comput. Med. Imaging Graph. 37(7), 512–521 (2013)CrossRef
40.
go back to reference Rao, V.; Shari Sarabi, M.; Jaiswal, A.: Brain tumor segmentation with deep learning. In: MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), pp. 56–59 (2015) Rao, V.; Shari Sarabi, M.; Jaiswal, A.: Brain tumor segmentation with deep learning. In: MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), pp. 56–59 (2015)
41.
go back to reference Saouli, R.; Akil, M.; Kachouri, R.; et al.: Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput. Methods Programs Biomed. 166, 39–49 (2018)CrossRef Saouli, R.; Akil, M.; Kachouri, R.; et al.: Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput. Methods Programs Biomed. 166, 39–49 (2018)CrossRef
42.
go back to reference Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)CrossRef Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)CrossRef
43.
go back to reference Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012) Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
44.
go back to reference Van Ooyen, A.; Nienhuis, B.: Improving the convergence of the back-propagation algorithm. Neural Netw. 5(3), 465–471 (1992)CrossRef Van Ooyen, A.; Nienhuis, B.: Improving the convergence of the back-propagation algorithm. Neural Netw. 5(3), 465–471 (1992)CrossRef
45.
go back to reference Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRef Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRef
46.
go back to reference Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH
48.
go back to reference Bottou, L.: Stochastic gradient descent tricks. In: Neural networks: Tricks of the Trade, pp. 421–436, Springer, New York (2012). Bottou, L.: Stochastic gradient descent tricks. In: Neural networks: Tricks of the Trade, pp. 421–436, Springer, New York (2012).
50.
go back to reference Hussain, S.; Anwar, S.M.; Majid, M.: Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282, 248–261 (2018)CrossRef Hussain, S.; Anwar, S.M.; Majid, M.: Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282, 248–261 (2018)CrossRef
Metadata
Title
Brain Tumor Detection and Segmentation in MR Images Using Deep Learning
Authors
Sidra Sajid
Saddam Hussain
Amna Sarwar
Publication date
28-06-2019
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 11/2019
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-03967-8

Other articles of this Issue 11/2019

Arabian Journal for Science and Engineering 11/2019 Go to the issue

Research Article - Computer Engineering and Computer Science

Prediction Using Cuckoo Search Optimized Echo State Network

Research Article - Computer Engineering and Computer Science

AE-MCCF: An Autoencoder-Based Multi-criteria Recommendation Algorithm

Research Article - Computer Engineering and Computer Science

Bayesian Versus Convolutional Networks for Arabic Handwriting Recognition

Premium Partners