Skip to main content
Top

2018 | OriginalPaper | Chapter

8. Buckling of Conical Shells

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Conical shells under the mechanical and thermal loads are considered in this chapter. The basic governing equations of the shell including the nonlinear strain-displacement relations of Sanders assumption, the constitutive law, the nonlinear equilibrium equations, and the linear stability equations are derived employing the variational principle. The stability of the shell is considered and the buckling loads associated with the mechanical and thermal forces are derived. In case of thermal loading, the material temperature dependency is considered and the results are compared with the case where temperature dependency of the material properties are ignored. Effect of the piezo-control on stability of conical shells under thermal loading concludes the chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates, and shells. New York: McGraw-Hill.MATH Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates, and shells. New York: McGraw-Hill.MATH
2.
go back to reference Eslami, M. R. (2010). Thermo-mechanical buckling of composite plates and shells. Tehran: Amirkabir University Press. Eslami, M. R. (2010). Thermo-mechanical buckling of composite plates and shells. Tehran: Amirkabir University Press.
3.
go back to reference Seide, P. (1956). Axisymmetric buckling of circular cones under axial compression. Journal of Applied Mechanics, 23, 625–628.MATHMathSciNet Seide, P. (1956). Axisymmetric buckling of circular cones under axial compression. Journal of Applied Mechanics, 23, 625–628.MATHMathSciNet
4.
5.
go back to reference Singer, J. (1961). Buckling of circular conical shells under axisymmetrical external pressure. Journal of Mechanical Engineering Science, 3, 330–339.CrossRef Singer, J. (1961). Buckling of circular conical shells under axisymmetrical external pressure. Journal of Mechanical Engineering Science, 3, 330–339.CrossRef
6.
go back to reference Baruch, M., & Singer, J. (1965). General instability of stiffened conical shells under hydrostatic pressure. Aero. Q., 26, 187–204.CrossRef Baruch, M., & Singer, J. (1965). General instability of stiffened conical shells under hydrostatic pressure. Aero. Q., 26, 187–204.CrossRef
7.
go back to reference Baruch, M., Harari, O., & Singer, J. (1967). Influence of in-plane boundary conditions on the stability of conical shells under hyrostatic pressure. Israel Journal of Technology, 5(1–2), 12–24. Baruch, M., Harari, O., & Singer, J. (1967). Influence of in-plane boundary conditions on the stability of conical shells under hyrostatic pressure. Israel Journal of Technology, 5(1–2), 12–24.
8.
go back to reference Baruch, M., Harari, O., & Singer, J. (1970). Low buckling loads of axially compressed conical shells. Journal of Applied Mechanics, 37, 384–392.CrossRef Baruch, M., Harari, O., & Singer, J. (1970). Low buckling loads of axially compressed conical shells. Journal of Applied Mechanics, 37, 384–392.CrossRef
9.
go back to reference Singer, J. (1962). Buckling of Orthotropic and Stiffened Conical Shells, NASA TN D-1510 (pp. 463–479). Singer, J. (1962). Buckling of Orthotropic and Stiffened Conical Shells, NASA TN D-1510 (pp. 463–479).
10.
go back to reference Singer, J. (1963). Donnell-type equations for bending and buckling of orthotropic conical shells. Journal of Applied Mechanics, 30, 303–305.CrossRefMATH Singer, J. (1963). Donnell-type equations for bending and buckling of orthotropic conical shells. Journal of Applied Mechanics, 30, 303–305.CrossRefMATH
11.
go back to reference Weigarten, V. I., & Seide, P. (1965a). Elastic stability of thin walled cylindrical and conical shells under combined external pressure and axial compression. AIAA Journal, 3, 913–920.CrossRef Weigarten, V. I., & Seide, P. (1965a). Elastic stability of thin walled cylindrical and conical shells under combined external pressure and axial compression. AIAA Journal, 3, 913–920.CrossRef
12.
go back to reference Weigarten, V. I., & Seide, P. (1965b). Elastic stability of thin walled cylindrical and conical shells under combined internal pressure and axial compression. AIAA Journal, 3, 1118–1125.CrossRef Weigarten, V. I., & Seide, P. (1965b). Elastic stability of thin walled cylindrical and conical shells under combined internal pressure and axial compression. AIAA Journal, 3, 1118–1125.CrossRef
13.
go back to reference Eslami, M. R., & Rafeeyan, M. (1996). Thermal and mechanical buckling of conical shells. In Proceedings of the 8th International Conference of Pressure Vessel Technology, Montreal, Canada. Eslami, M. R., & Rafeeyan, M. (1996). Thermal and mechanical buckling of conical shells. In Proceedings of the 8th International Conference of Pressure Vessel Technology, Montreal, Canada.
14.
go back to reference Pandey, M. D., & Sherboune, A. N. (1991). Imperfection sensitivity of optimized laminated composite shells: a physical approach. International Journal of Solids and Structures, 27(12), 1575–1595.CrossRef Pandey, M. D., & Sherboune, A. N. (1991). Imperfection sensitivity of optimized laminated composite shells: a physical approach. International Journal of Solids and Structures, 27(12), 1575–1595.CrossRef
15.
go back to reference Palassopoulos, G. V. (1993). New approach to buckling of imperfection sensitive structures. Journal of Engineering Mechanics, 119(4), 850–869.CrossRef Palassopoulos, G. V. (1993). New approach to buckling of imperfection sensitive structures. Journal of Engineering Mechanics, 119(4), 850–869.CrossRef
16.
go back to reference Kasagi, A., & Sridharan, S. (1995). Imperfection sensitivity of layered composite cylinders. Journal of Engineering Mechanics, 121(7), 810–818.CrossRef Kasagi, A., & Sridharan, S. (1995). Imperfection sensitivity of layered composite cylinders. Journal of Engineering Mechanics, 121(7), 810–818.CrossRef
17.
go back to reference Naj, R., Sabzikar, M., & Eslami, M. R. (2008). Thermal and mechanical instability of functionally graded truncated conical shells. Thin-Walled Structures, 46(1), 65–78.CrossRef Naj, R., Sabzikar, M., & Eslami, M. R. (2008). Thermal and mechanical instability of functionally graded truncated conical shells. Thin-Walled Structures, 46(1), 65–78.CrossRef
18.
go back to reference Singer, J. (1965). Buckling of circular conical shells under uniform axial compression. AIAA Journal, 3(5), 985–987.CrossRef Singer, J. (1965). Buckling of circular conical shells under uniform axial compression. AIAA Journal, 3(5), 985–987.CrossRef
19.
go back to reference Singer, J. (1962). The effect of axial constraint on the instability of thin conical shells under external pressure. Journal of Applied Mechanics, 29(1), 212–214.CrossRefMATH Singer, J. (1962). The effect of axial constraint on the instability of thin conical shells under external pressure. Journal of Applied Mechanics, 29(1), 212–214.CrossRefMATH
20.
go back to reference Lu, S. Y., & Chang, L. K. (1967). Thermal buckling of conical shells. AIAA Journal, 5(10), 1877–1882.CrossRefMATH Lu, S. Y., & Chang, L. K. (1967). Thermal buckling of conical shells. AIAA Journal, 5(10), 1877–1882.CrossRefMATH
21.
go back to reference Chang, L. K., & Lu, S. Y. (1968). Nonlinear thermal elastic buckling of conical shells. Nuclear Engineering and Design, 7(2), 159–169.CrossRef Chang, L. K., & Lu, S. Y. (1968). Nonlinear thermal elastic buckling of conical shells. Nuclear Engineering and Design, 7(2), 159–169.CrossRef
22.
go back to reference Tani, J. (1978). Influence of axisymmetric initial deflections on the thermal buckling of truncated conical shells. Nuclear Engineering and Design, 48(2–3), 393–403.CrossRef Tani, J. (1978). Influence of axisymmetric initial deflections on the thermal buckling of truncated conical shells. Nuclear Engineering and Design, 48(2–3), 393–403.CrossRef
23.
go back to reference Tani, J. (1984). Buckling of truncated conical shells under combined pressure and heating. Journal of Thermal Stresses, 7(3–4), 307–316.CrossRef Tani, J. (1984). Buckling of truncated conical shells under combined pressure and heating. Journal of Thermal Stresses, 7(3–4), 307–316.CrossRef
24.
go back to reference Tani, J. (1985). Buckling of truncated conical shells under combined axial load, pressure, and heating. Journal of Applied Mechanics, 52(2), 402–708.CrossRef Tani, J. (1985). Buckling of truncated conical shells under combined axial load, pressure, and heating. Journal of Applied Mechanics, 52(2), 402–708.CrossRef
25.
go back to reference Wu, C. P., & Chiu, S. J. (2001). Thermoelastic buckling of laminated composite conical shells. Journal of Thermal Stresses, 24(9), 881–901.CrossRef Wu, C. P., & Chiu, S. J. (2001). Thermoelastic buckling of laminated composite conical shells. Journal of Thermal Stresses, 24(9), 881–901.CrossRef
26.
go back to reference Patel, B. P., Shukla, K. K., & Nath, Y. (2005). Thermal postbuckling analysis of laminated cross-ply truncated circular conical shells. Composite Structures, 71(1), 101–114.CrossRef Patel, B. P., Shukla, K. K., & Nath, Y. (2005). Thermal postbuckling analysis of laminated cross-ply truncated circular conical shells. Composite Structures, 71(1), 101–114.CrossRef
27.
go back to reference Patel, B. P., Shukla, K. K., & Nath, Y. (2006). Nonlinear thermoelastic stability characteristics of cross-ply laminated oval cylindrical/conical shells. Finite Elements in Analysis and Design, 42(12), 1061–1070.CrossRef Patel, B. P., Shukla, K. K., & Nath, Y. (2006). Nonlinear thermoelastic stability characteristics of cross-ply laminated oval cylindrical/conical shells. Finite Elements in Analysis and Design, 42(12), 1061–1070.CrossRef
28.
go back to reference Roh, J. H., Woo, J. H., & Lee, I. (2009). Thermal post-buckling and vibration analysis of composite conical shell structures using layerwise theory. Journal of Thermal Stresses, 32(1–2), 41–64. Roh, J. H., Woo, J. H., & Lee, I. (2009). Thermal post-buckling and vibration analysis of composite conical shell structures using layerwise theory. Journal of Thermal Stresses, 32(1–2), 41–64.
29.
go back to reference Singh, B. N., & Babu, J. B. (2009). Thermal buckling of laminated composite conical shell panel with and without piezoelectric layer with random material properties. International Journal of Crashworthiness, 14(1), 73–81.CrossRef Singh, B. N., & Babu, J. B. (2009). Thermal buckling of laminated composite conical shell panel with and without piezoelectric layer with random material properties. International Journal of Crashworthiness, 14(1), 73–81.CrossRef
30.
go back to reference Singh, B. N., & Babu, J. B. (2009). Thermal buckling of laminated conical shells embedded with and without piezoelectric layer. Journal of Reinforced Plastics and Composites, 28(7), 731–812.CrossRef Singh, B. N., & Babu, J. B. (2009). Thermal buckling of laminated conical shells embedded with and without piezoelectric layer. Journal of Reinforced Plastics and Composites, 28(7), 731–812.CrossRef
31.
go back to reference Bhangale, R., Ganesan, N., & Padmanabhan, C.h. (2006). Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells. J Sound and Vibration, 292(1–2), 341–371. Bhangale, R., Ganesan, N., & Padmanabhan, C.h. (2006). Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells. J Sound and Vibration, 292(1–2), 341–371.
32.
go back to reference Sofiyev, A. H. (2007). Thermoelastic stability of functionally graded truncated conical shells. Composite Structures, 77(1), 56–65.CrossRef Sofiyev, A. H. (2007). Thermoelastic stability of functionally graded truncated conical shells. Composite Structures, 77(1), 56–65.CrossRef
33.
go back to reference Sofiyev, A. H. (2011). Thermal buckling of FGM shells resting on a two-parameter elastic foundation. Thin-Walled Structure, 49(10), 1304–11.CrossRefMathSciNet Sofiyev, A. H. (2011). Thermal buckling of FGM shells resting on a two-parameter elastic foundation. Thin-Walled Structure, 49(10), 1304–11.CrossRefMathSciNet
34.
go back to reference Torabi, J., Kiani, Y., & Eslami, M. R. (2013). Linear thermal buckling analysis of truncated hybrid FGM conical shells. Composites Part B: Engineering, 50(1), 265–272.CrossRef Torabi, J., Kiani, Y., & Eslami, M. R. (2013). Linear thermal buckling analysis of truncated hybrid FGM conical shells. Composites Part B: Engineering, 50(1), 265–272.CrossRef
37.
go back to reference Jabareen, M., & Sheinman, I. (2006). Postbuckling analysis of geometrically imperfect conical shells. Journal of Engineering Mechanics, 132(12), 1326–1334.CrossRef Jabareen, M., & Sheinman, I. (2006). Postbuckling analysis of geometrically imperfect conical shells. Journal of Engineering Mechanics, 132(12), 1326–1334.CrossRef
38.
go back to reference Jabareen, M., & Sheinman, I. (2009). Stability of imperfect stiffened conical shells. International Journal of Solids and Structures, 46(10), 2111–2125.CrossRefMATH Jabareen, M., & Sheinman, I. (2009). Stability of imperfect stiffened conical shells. International Journal of Solids and Structures, 46(10), 2111–2125.CrossRefMATH
39.
go back to reference Sofiyev, A. H., Kuruoghlu, N., & Turkmen, M. (2009). Buckling of FGM hybrid truncated conical shells subjected to hydrostatic pressure. Thin-Walled Structures, 47, 61–72.CrossRef Sofiyev, A. H., Kuruoghlu, N., & Turkmen, M. (2009). Buckling of FGM hybrid truncated conical shells subjected to hydrostatic pressure. Thin-Walled Structures, 47, 61–72.CrossRef
40.
go back to reference Sofiyev, A. H. (2009). The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure. Composite Structures, 89, 356–366.CrossRef Sofiyev, A. H. (2009). The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure. Composite Structures, 89, 356–366.CrossRef
41.
go back to reference Sofiyev, A. H. (2010). The buckling of FGM truncated conical shells subjected to combined axial tension and hydrostatic pressure. Composite Structures, 92, 488–498.CrossRef Sofiyev, A. H. (2010). The buckling of FGM truncated conical shells subjected to combined axial tension and hydrostatic pressure. Composite Structures, 92, 488–498.CrossRef
42.
go back to reference Sofiyev, A. H. (2010). Buckling analysis of FGM circular shells under combined loads and resting on the Pasternak type elastic foundation. Mechanics Research Communications, 37, 539–544.CrossRefMATH Sofiyev, A. H. (2010). Buckling analysis of FGM circular shells under combined loads and resting on the Pasternak type elastic foundation. Mechanics Research Communications, 37, 539–544.CrossRefMATH
43.
go back to reference Bich, D., Phoung, N., & Tung, H. (2012). Buckling of functionally graded conical panels under mechanical loads. Composite Structures, 94, 1379–84.CrossRef Bich, D., Phoung, N., & Tung, H. (2012). Buckling of functionally graded conical panels under mechanical loads. Composite Structures, 94, 1379–84.CrossRef
44.
go back to reference Sofiyev, A. H. (2011). Influence of the initial imperfection on the non-linear buckling response of FGM truncated conical shells. International Journal of Mechanical Sciences, 53, 753–762.CrossRef Sofiyev, A. H. (2011). Influence of the initial imperfection on the non-linear buckling response of FGM truncated conical shells. International Journal of Mechanical Sciences, 53, 753–762.CrossRef
45.
go back to reference Sabzikar Boroujerdy, M., & Eslami, M. R. (2015). Unsymmetrical buckling of piezo-FGM shallow clamped spherical shells under thermal loading. Journal of Thermal Stresses, 38(11), 1290–1307.CrossRef Sabzikar Boroujerdy, M., & Eslami, M. R. (2015). Unsymmetrical buckling of piezo-FGM shallow clamped spherical shells under thermal loading. Journal of Thermal Stresses, 38(11), 1290–1307.CrossRef
46.
go back to reference Wu, L., Jiang, Z., & Liu, J. (2005). Thermoelastic stability of functionally graded cylindrical shells. Composite Structures, 70, 60–68.CrossRef Wu, L., Jiang, Z., & Liu, J. (2005). Thermoelastic stability of functionally graded cylindrical shells. Composite Structures, 70, 60–68.CrossRef
Metadata
Title
Buckling of Conical Shells
Author
M. Reza Eslami
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-62368-9_8

Premium Partners