Skip to main content
Top
Published in: Journal of Materials Science 11/2017

08-02-2017 | Original Paper

Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption

Authors: Yung-Chin Yang, Juti Rani Deka, Cheng-En Wu, Cheng-Hsun Tsai, Diganta Saikia, Hsien-Ming Kao

Published in: Journal of Materials Science | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cubic FDU-12 type mesoporous silicas with enlarged pores and carboxylic acid (–COOH) functionality in the pore channels (denoted as LP-FTC-x) are synthesized using tetraethyl orthosilicate (TEOS) and carboxyethylsilanetriol sodium salt (CES) as silica sources, Pluronic F127 triblock copolymer as template, and trimethylbenzene (TMB) as pore expander, and utilized them as supports for enzyme immobilization. When the –COOH content is increased from 0 to 30%, the pore size of LP-FTC-x decreases from 23.6 to 11.1 nm, and its particle size decreases from around 2 μm to 600–800 nm. The material exhibits a high papain adsorption capacity (895 mg g−1) with a low leaching rate at pH 8.2 due to the well-defined surface chemistry in the pore channel. The adsorption kinetics and isotherms follow the pseudo-second-order model and the Langmuir isotherm model, respectively. The excellent structural properties of LP-FTC-x are also advantageous for enhancement in stability of enzyme toward the temperature, solution pH, and incubation time variations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilization. Chem Soc Rev 38(453):468 Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilization. Chem Soc Rev 38(453):468
2.
go back to reference Hudson S, Cooney J, Magner E (2008) Proteins in mesoporous silicates. Angew Chem Int Ed 47:8582–8594CrossRef Hudson S, Cooney J, Magner E (2008) Proteins in mesoporous silicates. Angew Chem Int Ed 47:8582–8594CrossRef
3.
go back to reference Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17:4577–4593CrossRef Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17:4577–4593CrossRef
4.
go back to reference Muller R, Anders N, Titus J, Enke D (2013) Ultra-thin porous glass membranes-an innovative material for the immobilization of active species for optical chemosensors. Talanta 107:255–262CrossRef Muller R, Anders N, Titus J, Enke D (2013) Ultra-thin porous glass membranes-an innovative material for the immobilization of active species for optical chemosensors. Talanta 107:255–262CrossRef
5.
go back to reference Xiong M, Gu B, Zhang JD, Xu JJ, Chen HY, Zhong H (2013) Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer. Biosens Bioelectron 50:229–234CrossRef Xiong M, Gu B, Zhang JD, Xu JJ, Chen HY, Zhong H (2013) Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer. Biosens Bioelectron 50:229–234CrossRef
6.
go back to reference Romdhane IB, Romdhane ZB, Bouzid M, Gargouri A, Belghith H (2013) Application of a chitosan-immobilized talaromyces thermophilus lipase to a batch biodiesel production from waste frying oils. Appl Biochem Biotechnol 171:1986–2002CrossRef Romdhane IB, Romdhane ZB, Bouzid M, Gargouri A, Belghith H (2013) Application of a chitosan-immobilized talaromyces thermophilus lipase to a batch biodiesel production from waste frying oils. Appl Biochem Biotechnol 171:1986–2002CrossRef
7.
go back to reference Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35:126–139CrossRef Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35:126–139CrossRef
8.
go back to reference Sathishkumar P, Kamala-Kannan S, Cho M, Kim JS, Hadibarata T, Salim MR, Oh B-T (2014) Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment. J Mol Catal B Enzym 100:111–120CrossRef Sathishkumar P, Kamala-Kannan S, Cho M, Kim JS, Hadibarata T, Salim MR, Oh B-T (2014) Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment. J Mol Catal B Enzym 100:111–120CrossRef
9.
go back to reference Diaz JF, Balkus KS Jr (1996) Enzyme immobilization in MCM-41 molecular sieve. J Mol Catal B Enzym 2:115–126CrossRef Diaz JF, Balkus KS Jr (1996) Enzyme immobilization in MCM-41 molecular sieve. J Mol Catal B Enzym 2:115–126CrossRef
10.
go back to reference Yiu HHP, Wright PA, Botting NP (2001) Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. J Mol Catal B Enzym 15:81–92CrossRef Yiu HHP, Wright PA, Botting NP (2001) Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. J Mol Catal B Enzym 15:81–92CrossRef
11.
go back to reference Yiu HHP, Wright PA, Botting NP (2001) Enzyme immobilisation using siliceous mesoporous molecular sieves. Microporous Mesoporous Mater 44–45:763–768CrossRef Yiu HHP, Wright PA, Botting NP (2001) Enzyme immobilisation using siliceous mesoporous molecular sieves. Microporous Mesoporous Mater 44–45:763–768CrossRef
12.
go back to reference Maddala SP, Velluto D, Luklinska Z, Sullivan AC (2014) Large pore raspberry textured phosphonate@silica nanoparticles for protein immobilization. J Mater Chem B 2:903–914CrossRef Maddala SP, Velluto D, Luklinska Z, Sullivan AC (2014) Large pore raspberry textured phosphonate@silica nanoparticles for protein immobilization. J Mater Chem B 2:903–914CrossRef
13.
go back to reference Masuda Y, Kugimiya S, Kawachi Y, Kato K (2014) Interparticle mesoporous silica as an effective support for enzyme immobilization. RSC Adv 4:3573–3580CrossRef Masuda Y, Kugimiya S, Kawachi Y, Kato K (2014) Interparticle mesoporous silica as an effective support for enzyme immobilization. RSC Adv 4:3573–3580CrossRef
14.
go back to reference Tu J, Boyle AL, Friedrich H, Bomans PHH, Bussmann J, Sommerdijk NAJM, Jiskoot W, Kros A (2016) Mesoporous silica nanoparticles with large pores for the encapsulation and release of proteins. ACS Appl Mater Interfaces 8:32211–32219CrossRef Tu J, Boyle AL, Friedrich H, Bomans PHH, Bussmann J, Sommerdijk NAJM, Jiskoot W, Kros A (2016) Mesoporous silica nanoparticles with large pores for the encapsulation and release of proteins. ACS Appl Mater Interfaces 8:32211–32219CrossRef
15.
go back to reference Luo W, Li Y, Dong J, Wei J, Xu J, Deng Y, Zhao D (2013) A resol-assisted co-assembly approach to crystalline mesoporous niobia spheres for electrochemical biosensing. Angew Chem Int Ed 52:10505–10510CrossRef Luo W, Li Y, Dong J, Wei J, Xu J, Deng Y, Zhao D (2013) A resol-assisted co-assembly approach to crystalline mesoporous niobia spheres for electrochemical biosensing. Angew Chem Int Ed 52:10505–10510CrossRef
16.
go back to reference Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29CrossRef Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29CrossRef
17.
go back to reference Wang M, Sun Z, Yue Q, Yang J, Wang X, Deng Y, Yu C, Zhao D (2014) An interface-directed coassembly approach to synthesize uniform large-pore mesoporous silica spheres. J Am Chem Soc 136:1884–1892CrossRef Wang M, Sun Z, Yue Q, Yang J, Wang X, Deng Y, Yu C, Zhao D (2014) An interface-directed coassembly approach to synthesize uniform large-pore mesoporous silica spheres. J Am Chem Soc 136:1884–1892CrossRef
18.
go back to reference Sun Z, Yue Q, Liu Y, Wei J, Li B, Kaliaguine S, Deng Y, Wu Z, Zhao D (2014) Rational synthesis of superparamagnetic core–shell structured mesoporous microspheres with large pore sizes. J Mater Chem A 2:18322–18328CrossRef Sun Z, Yue Q, Liu Y, Wei J, Li B, Kaliaguine S, Deng Y, Wu Z, Zhao D (2014) Rational synthesis of superparamagnetic core–shell structured mesoporous microspheres with large pore sizes. J Mater Chem A 2:18322–18328CrossRef
19.
go back to reference Sun Z, Zhou X, Luo W, Yue Q, Zhang Y, Cheng X, Li W, Kong B, Deng Y, Zhao D (2016) Interfacial engineering of magnetic particles with porous shells: towards magnetic core-porous shell microparticles. Nano Today 11:464–482CrossRef Sun Z, Zhou X, Luo W, Yue Q, Zhang Y, Cheng X, Li W, Kong B, Deng Y, Zhao D (2016) Interfacial engineering of magnetic particles with porous shells: towards magnetic core-porous shell microparticles. Nano Today 11:464–482CrossRef
20.
go back to reference Sun Z, Deng Y, Wei J, Gu D, Tu B, Zhao D (2011) Hierarchically ordered macro-/mesoporous silica monolith: tuning macropore entrance size for size-selective adsorption of proteins. Chem Mater 23:2176–2184CrossRef Sun Z, Deng Y, Wei J, Gu D, Tu B, Zhao D (2011) Hierarchically ordered macro-/mesoporous silica monolith: tuning macropore entrance size for size-selective adsorption of proteins. Chem Mater 23:2176–2184CrossRef
21.
go back to reference Yue Q, Li J, Luo W, Zhang Y, Elzatahry AA, Wang X, Wang C, Li W, Cheng X, Alghamdi A, Abdullah AM, Deng Y, Zhao D (2015) An interface coassembly in biliquid phase: toward core–shell magnetic mesoporous silica microspheres with tunable pore size. J Am Chem Soc 137:13282–13289CrossRef Yue Q, Li J, Luo W, Zhang Y, Elzatahry AA, Wang X, Wang C, Li W, Cheng X, Alghamdi A, Abdullah AM, Deng Y, Zhao D (2015) An interface coassembly in biliquid phase: toward core–shell magnetic mesoporous silica microspheres with tunable pore size. J Am Chem Soc 137:13282–13289CrossRef
22.
go back to reference Garcia PRAF, Bicev RN, Oliveira CLP, Sant’Anna OA, Fantini MCA (2016) Protein encapsulation in SBA-15 with expanded pores. Microporous Mesoporous Mater 235:59–68CrossRef Garcia PRAF, Bicev RN, Oliveira CLP, Sant’Anna OA, Fantini MCA (2016) Protein encapsulation in SBA-15 with expanded pores. Microporous Mesoporous Mater 235:59–68CrossRef
23.
go back to reference Santos SML, Cecilia JA, Vilarrasa-Garcia E, Silva IJ, Rodriguez-Castellon E, Azevedo DCS (2016) The effect of structure modifying agents in the SBA-15 for its application in the biomoleculesadsorption. Microporous Mesoporous Mater 232:53–64CrossRef Santos SML, Cecilia JA, Vilarrasa-Garcia E, Silva IJ, Rodriguez-Castellon E, Azevedo DCS (2016) The effect of structure modifying agents in the SBA-15 for its application in the biomoleculesadsorption. Microporous Mesoporous Mater 232:53–64CrossRef
24.
go back to reference Fan J, Yu C, Gao F, Lei J, Tian B, Wang L, Luo Q, Tu B, Zhou W, Zhao D (2003) Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew Chem Int Ed 42:3146–3150CrossRef Fan J, Yu C, Gao F, Lei J, Tian B, Wang L, Luo Q, Tu B, Zhou W, Zhao D (2003) Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew Chem Int Ed 42:3146–3150CrossRef
25.
go back to reference Vinu A, Gokulakrishnan N, Balasubramanian VV, Alam S, Kapoor MP, Ariga K, Mori T (2008) Three-dimensional ultralarge-pore Ia3d mesoporous silica with various pore diameters and their application in biomolecule immobilization. Chem Eur J 14:11529–11538CrossRef Vinu A, Gokulakrishnan N, Balasubramanian VV, Alam S, Kapoor MP, Ariga K, Mori T (2008) Three-dimensional ultralarge-pore Ia3d mesoporous silica with various pore diameters and their application in biomolecule immobilization. Chem Eur J 14:11529–11538CrossRef
26.
go back to reference Vinu A, Miyahara M, Hossain KZ, Takahashi M, Balasubramanian VV, Mori T, Ariga K (2007) Lysozyme adsorption onto mesoporous materials: effect of pore geometry and stability of adsorbents. J Nanosci Nanotechnol 7:828–832CrossRef Vinu A, Miyahara M, Hossain KZ, Takahashi M, Balasubramanian VV, Mori T, Ariga K (2007) Lysozyme adsorption onto mesoporous materials: effect of pore geometry and stability of adsorbents. J Nanosci Nanotechnol 7:828–832CrossRef
27.
go back to reference Xu J, Liu W, Yu Y, Du J, Li N, Xu L (2014) Synthesis of mono-dispersed mesoporous SBA-1 nanoparticles with tunable pore size and their application in lysozyme immobilization. RSC Adv 4:37470–37478CrossRef Xu J, Liu W, Yu Y, Du J, Li N, Xu L (2014) Synthesis of mono-dispersed mesoporous SBA-1 nanoparticles with tunable pore size and their application in lysozyme immobilization. RSC Adv 4:37470–37478CrossRef
28.
go back to reference Xue P, Lu G, Guo Y, Wang Y, Guo Y (2004) A novel support of MCM-48 molecular sieve for immobilization of penicillin G acylase. J Mol Catal B Enzym 30:75–81CrossRef Xue P, Lu G, Guo Y, Wang Y, Guo Y (2004) A novel support of MCM-48 molecular sieve for immobilization of penicillin G acylase. J Mol Catal B Enzym 30:75–81CrossRef
29.
go back to reference Schlossbauer A, Schaffert D, Kecht J, Wagner E, Bein T (2008) Click chemistry for high-density biofunctionalization of mesoporous silica. J Am Chem Soc 130:12558–12559CrossRef Schlossbauer A, Schaffert D, Kecht J, Wagner E, Bein T (2008) Click chemistry for high-density biofunctionalization of mesoporous silica. J Am Chem Soc 130:12558–12559CrossRef
30.
go back to reference Sun H, Bao XY, Zhao XS (2009) Immobilization of penicillin G acylase on oxirane-modified mesoporous silicas. Langmuir 25:1807–1812CrossRef Sun H, Bao XY, Zhao XS (2009) Immobilization of penicillin G acylase on oxirane-modified mesoporous silicas. Langmuir 25:1807–1812CrossRef
31.
go back to reference Park M, Park SS, Selvaraj M, Zhao D, Ha CS (2009) Hydrophobic mesoporous materials for immobilization of enzymes. Microporous Mesoporous Mater 124:76–83CrossRef Park M, Park SS, Selvaraj M, Zhao D, Ha CS (2009) Hydrophobic mesoporous materials for immobilization of enzymes. Microporous Mesoporous Mater 124:76–83CrossRef
32.
go back to reference Yiu HHP, Wright PA (2005) Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid. J Mater Chem 15:3690–3700CrossRef Yiu HHP, Wright PA (2005) Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid. J Mater Chem 15:3690–3700CrossRef
33.
go back to reference Lei C, Shin Y, Liu J, Ackerman EJ (2002) Entrapping enzyme in a functionalized nanoporous support. J Am Chem Soc 124:11242–11243CrossRef Lei C, Shin Y, Liu J, Ackerman EJ (2002) Entrapping enzyme in a functionalized nanoporous support. J Am Chem Soc 124:11242–11243CrossRef
34.
go back to reference Xu W, Gao Q, Xu Y, Wu D, Sun Y, Shen W, Deng F (2008) Controlled drug release from bifunctionalized mesoporous silica. J Solid State Chem 181:2837–2844CrossRef Xu W, Gao Q, Xu Y, Wu D, Sun Y, Shen W, Deng F (2008) Controlled drug release from bifunctionalized mesoporous silica. J Solid State Chem 181:2837–2844CrossRef
35.
go back to reference Suzuki TM, Mizutani M, Nakamura T, Akimoto Y, Yano K (2008) Pore-expansion of organically functionalized monodispersed mesoporous silica spheres and pore-size effects on adsorption and catalytic properties. Microporous Mesoporous Mater 116:284–291CrossRef Suzuki TM, Mizutani M, Nakamura T, Akimoto Y, Yano K (2008) Pore-expansion of organically functionalized monodispersed mesoporous silica spheres and pore-size effects on adsorption and catalytic properties. Microporous Mesoporous Mater 116:284–291CrossRef
36.
go back to reference Yiu HHP, Botting CH, Botting NP, Wright PA (2001) Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve. Phys Chem Chem Phys 3:2983–2985CrossRef Yiu HHP, Botting CH, Botting NP, Wright PA (2001) Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve. Phys Chem Chem Phys 3:2983–2985CrossRef
37.
go back to reference Shah P, Sridevi N, Prabhune A, Ramaswamy V (2008) Structural features of Penicillin acylase adsorption on APTES functionalized SBA-15. Microporous Mesoporous Mater 116:157–165CrossRef Shah P, Sridevi N, Prabhune A, Ramaswamy V (2008) Structural features of Penicillin acylase adsorption on APTES functionalized SBA-15. Microporous Mesoporous Mater 116:157–165CrossRef
38.
go back to reference Hartono SB, Qiao SZ, Jack K, Ladewig BP, Hao Z, Lu GQ (2009) Improving adsorbent properties of cage-like ordered amine functionalized mesoporous silica with very large pores for bioadsorption. Langmuir 25:6413–6424CrossRef Hartono SB, Qiao SZ, Jack K, Ladewig BP, Hao Z, Lu GQ (2009) Improving adsorbent properties of cage-like ordered amine functionalized mesoporous silica with very large pores for bioadsorption. Langmuir 25:6413–6424CrossRef
39.
go back to reference Solis S, Martinez JC, Paniagua J, Asomoza M (2006) Heat of adsorption of cysteine enzymes on mesoporous silica with high specific surface area. J Sol-Gel Sci Technol 37:121–123CrossRef Solis S, Martinez JC, Paniagua J, Asomoza M (2006) Heat of adsorption of cysteine enzymes on mesoporous silica with high specific surface area. J Sol-Gel Sci Technol 37:121–123CrossRef
40.
go back to reference Wang MF, Qi W, Yu QX, Su RX, He ZM (2010) Cross-linking enzyme aggregates in the macropores of silica gel: a practical and efficient method for enzyme stabilization. Biochem Eng J 52:168–174CrossRef Wang MF, Qi W, Yu QX, Su RX, He ZM (2010) Cross-linking enzyme aggregates in the macropores of silica gel: a practical and efficient method for enzyme stabilization. Biochem Eng J 52:168–174CrossRef
41.
go back to reference He F, Zhuo RX, Liu LJ, Xu MY (2009) Immobilization of acylase on porous silica beads: preparation and thermal activation studies. React Funct Polym 45:29–33CrossRef He F, Zhuo RX, Liu LJ, Xu MY (2009) Immobilization of acylase on porous silica beads: preparation and thermal activation studies. React Funct Polym 45:29–33CrossRef
42.
go back to reference Solis S, Paniagua J, Martinez JC, Asomoza M (2006) Immobilization of papain on mesoporous silica: pH effect. J Sol-Gel Sci Technol 37:125–127CrossRef Solis S, Paniagua J, Martinez JC, Asomoza M (2006) Immobilization of papain on mesoporous silica: pH effect. J Sol-Gel Sci Technol 37:125–127CrossRef
43.
go back to reference Fan J, Yu C, Lei J, Zhang Q, Li T, Tu B, Zhou W, Zhao D (2005) Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J Am Chem Soc 127:10794–10795CrossRef Fan J, Yu C, Lei J, Zhang Q, Li T, Tu B, Zhou W, Zhao D (2005) Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J Am Chem Soc 127:10794–10795CrossRef
44.
go back to reference Chang WC, Deka JR, Wu HY, Shieh FK, Hwang SY, Kao HM (2013) Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents. Appl Catal B 142–143:817–827CrossRef Chang WC, Deka JR, Wu HY, Shieh FK, Hwang SY, Kao HM (2013) Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents. Appl Catal B 142–143:817–827CrossRef
45.
go back to reference Matos JR, Kruk M, Mercuri LP, Jaroniec M, Zhao L, Kamiyama T, Terasaki O, Pinnavaia TJ, Liu Y (2003) Ordered mesoporous silica with large cage-like pores: structural identification and pore connectivity design by controlling the synthesis temperature and time. J Am Chem Soc 125:821–829CrossRef Matos JR, Kruk M, Mercuri LP, Jaroniec M, Zhao L, Kamiyama T, Terasaki O, Pinnavaia TJ, Liu Y (2003) Ordered mesoporous silica with large cage-like pores: structural identification and pore connectivity design by controlling the synthesis temperature and time. J Am Chem Soc 125:821–829CrossRef
46.
go back to reference Hartono SB, Qiao SZ, Liu J, Jack K, Ladewig BP, Hao Z, Lu GQM (2010) Functionalized mesoporous silica with very large pores for cellulase immobilization. J Phys Chem C 114:8353–8362CrossRef Hartono SB, Qiao SZ, Liu J, Jack K, Ladewig BP, Hao Z, Lu GQM (2010) Functionalized mesoporous silica with very large pores for cellulase immobilization. J Phys Chem C 114:8353–8362CrossRef
47.
go back to reference Deka JR, Saikia D, Lai YS, Tsai CS, Chang WC, Kao HM (2015) Roles of nanostructures and carboxylic acid functionalization of ordered cubic mesoporous silicas in lysozyme immobilization. Microporous Mesoporous Mater 213:150–160CrossRef Deka JR, Saikia D, Lai YS, Tsai CS, Chang WC, Kao HM (2015) Roles of nanostructures and carboxylic acid functionalization of ordered cubic mesoporous silicas in lysozyme immobilization. Microporous Mesoporous Mater 213:150–160CrossRef
48.
go back to reference Bian W, Yan B, Shi N, Qiu F, Lou LL, Qi B, Liu S (2012) Room temperature ionic liquid (RTIL)-decorated mesoporous silica SBA-15 for papain immobilization: RTIL increased the amount and activity of immobilized enzyme. Mater Sci Eng, C 32:364–368CrossRef Bian W, Yan B, Shi N, Qiu F, Lou LL, Qi B, Liu S (2012) Room temperature ionic liquid (RTIL)-decorated mesoporous silica SBA-15 for papain immobilization: RTIL increased the amount and activity of immobilized enzyme. Mater Sci Eng, C 32:364–368CrossRef
49.
go back to reference Na W, Wei Q, Zou ZC, Li QY, Nie ZR (2008) Large pore 3D cubic mesoporous silica HOM-5 for enzyme immobilization. Mater Lett 62:3707–3709CrossRef Na W, Wei Q, Zou ZC, Li QY, Nie ZR (2008) Large pore 3D cubic mesoporous silica HOM-5 for enzyme immobilization. Mater Lett 62:3707–3709CrossRef
50.
go back to reference Alpay P, Uygun DA (2015) Usage of immobilized papain for enzymatic hydrolysis of proteins. J Mol Catal B Enzym 111:56–63CrossRef Alpay P, Uygun DA (2015) Usage of immobilized papain for enzymatic hydrolysis of proteins. J Mol Catal B Enzym 111:56–63CrossRef
51.
go back to reference Na W, Wei Q, Lan JN, Nie ZR, Sun H, Li QY (2010) Effective immobilization of enzyme in glycidoxypropyl-functionalized periodic mesoporous organosilicas (PMOs). Microporous Mesoporous Mater 134:72–78CrossRef Na W, Wei Q, Lan JN, Nie ZR, Sun H, Li QY (2010) Effective immobilization of enzyme in glycidoxypropyl-functionalized periodic mesoporous organosilicas (PMOs). Microporous Mesoporous Mater 134:72–78CrossRef
52.
go back to reference Bian W, Lou LL, Yan B, Zhang C, Wu S, Liu S (2011) Immobilization of papain by carboxyl-modified SBA-15: Rechecking the carboxyl after excluding the contribution of H2SO4 treatment. Microporous Mesoporous Mater 143:341–347CrossRef Bian W, Lou LL, Yan B, Zhang C, Wu S, Liu S (2011) Immobilization of papain by carboxyl-modified SBA-15: Rechecking the carboxyl after excluding the contribution of H2SO4 treatment. Microporous Mesoporous Mater 143:341–347CrossRef
53.
go back to reference Shi X, Liu J, Li C, Yang Q (2007) Pore-size tunable mesoporous zirconium organophosphonates with chiral l-proline for enzyme adsorption. Inorg Chem 46:7944–7952CrossRef Shi X, Liu J, Li C, Yang Q (2007) Pore-size tunable mesoporous zirconium organophosphonates with chiral l-proline for enzyme adsorption. Inorg Chem 46:7944–7952CrossRef
54.
go back to reference Carbonaro M, Nucara A (2010) Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 38:679–690CrossRef Carbonaro M, Nucara A (2010) Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 38:679–690CrossRef
55.
go back to reference Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe, Kungl. Svenska Vetenskapsakad Handl 24:1–39 Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe, Kungl. Svenska Vetenskapsakad Handl 24:1–39
56.
go back to reference Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRef Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRef
57.
go back to reference Weber WJ, Morri JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60 Weber WJ, Morri JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60
58.
go back to reference Michelson LD, Gideon PG, Pace EG, Kutal LH (1975) Removal of soluble mercury from wastewater by complexing technique. US Dept. Industry, Office of the Water Research and Technology. Bull. No. 74 Michelson LD, Gideon PG, Pace EG, Kutal LH (1975) Removal of soluble mercury from wastewater by complexing technique. US Dept. Industry, Office of the Water Research and Technology. Bull. No. 74
59.
go back to reference Boyd GE, Adamson AM, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc 69:2836–2848CrossRef Boyd GE, Adamson AM, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc 69:2836–2848CrossRef
60.
go back to reference Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRef Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRef
61.
go back to reference Freundlich HMF (1906) Über die adsorption in lösungen. Z Phys Chem 57A:385–470 Freundlich HMF (1906) Über die adsorption in lösungen. Z Phys Chem 57A:385–470
62.
go back to reference Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337 Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337
63.
go back to reference Helfferich F (1962) Ion Exchange. McGraw-Hill, New York Helfferich F (1962) Ion Exchange. McGraw-Hill, New York
64.
go back to reference Sharma P, Hussain N, Borah DJ, Das MR (2013) Kinetics and adsorption behavior of the methyl blue at the graphene oxide/reduced graphene oxide nanosheet-water interface: A comparative study. J Chem Eng Data 58:3477–3488CrossRef Sharma P, Hussain N, Borah DJ, Das MR (2013) Kinetics and adsorption behavior of the methyl blue at the graphene oxide/reduced graphene oxide nanosheet-water interface: A comparative study. J Chem Eng Data 58:3477–3488CrossRef
65.
go back to reference Fernandes AN, Almedia CAP, Debacher NA, Sierra MMDS (2010) Isotherm and thermodynamic data of adsorption of methylene blue from aqueous solution onto peat. J Mol Struct 982:62–65CrossRef Fernandes AN, Almedia CAP, Debacher NA, Sierra MMDS (2010) Isotherm and thermodynamic data of adsorption of methylene blue from aqueous solution onto peat. J Mol Struct 982:62–65CrossRef
66.
go back to reference Wang M, Jia C, Qi W, Yu Q, Peng X, Su R, He Z (2011) Porous-CLEAs of papain: Application to enzymatic hydrolysis of macromolecules. Bioresour Technol 102:3541–3545CrossRef Wang M, Jia C, Qi W, Yu Q, Peng X, Su R, He Z (2011) Porous-CLEAs of papain: Application to enzymatic hydrolysis of macromolecules. Bioresour Technol 102:3541–3545CrossRef
67.
go back to reference Kawai A, Urabe Y, Itoh T, Mizukami F (2010) Immobilization of lysozyme on the layered silicate RUB-15. Mater Chem Phys 122:269–272CrossRef Kawai A, Urabe Y, Itoh T, Mizukami F (2010) Immobilization of lysozyme on the layered silicate RUB-15. Mater Chem Phys 122:269–272CrossRef
Metadata
Title
Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption
Authors
Yung-Chin Yang
Juti Rani Deka
Cheng-En Wu
Cheng-Hsun Tsai
Diganta Saikia
Hsien-Ming Kao
Publication date
08-02-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 11/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0864-5

Other articles of this Issue 11/2017

Journal of Materials Science 11/2017 Go to the issue

Premium Partners