Skip to main content
Top
Published in: Journal of Materials Science 11/2017

07-02-2017 | Original Paper

Green’s function investigation of quantum transport and current patterns in 2D electronic system under spatially modulated magnetic fields

Authors: Y. L. Liu, X. W. Zhang

Published in: Journal of Materials Science | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using the recursive non-equilibrium Keldysh Green’s function formalism, the conductance and current patterns in two-dimensional electronic system (2DES) under spatially modulated magnetic fields are studied. The quantized conductance platforms are found for both B = 0.0 T and a homogeneous magnetic field B = 2.0 T. The results are in agreement with their corresponding band structures. However, the applied magnetic field is often inhomogeneous. By depositing a ferromagnetic strip at the top of 2DES, the stray magnetic field can be produced around the strip. Such magnetic field is adopted widely in many previous studies. Our computed result shows that the conductance is suppressed dramatically and some conductance peaks are found at the low-Fermi energy region. These peaks originate from resonant transmission via quasilocalized states. LDOS and differential conductance patterns also suggest the corresponding states are really localized in a small region. We also investigate the conductance for the cases of different magnetic field magnitudes. It is found, with applied magnetic field increasing, the conductance suppression is more and more significant and the threshold Fermi energy for current flow is shifted to high-energy region.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Buchholz D, Drouvelis PS, Schmelcher P (2006) Single electron quantum dot in a spatially periodic magnetic field. Phys Rev B 73:235346CrossRef Buchholz D, Drouvelis PS, Schmelcher P (2006) Single electron quantum dot in a spatially periodic magnetic field. Phys Rev B 73:235346CrossRef
2.
go back to reference Ibrahim IS, Peeters FM (1995) Two-dimensional electrons in lateral magnetic superlattices. Phys Rev B 52:17321–17334CrossRef Ibrahim IS, Peeters FM (1995) Two-dimensional electrons in lateral magnetic superlattices. Phys Rev B 52:17321–17334CrossRef
3.
go back to reference Krakovsky A (1996) Electronic band structure in a periodic magnetic field. Phys Rev B 53:8469–8472CrossRef Krakovsky A (1996) Electronic band structure in a periodic magnetic field. Phys Rev B 53:8469–8472CrossRef
4.
go back to reference Reijniers J, Peeters FM (2000) Snake orbits and related magnetic edge states. J Phys Condens Matter 12:9771–9786CrossRef Reijniers J, Peeters FM (2000) Snake orbits and related magnetic edge states. J Phys Condens Matter 12:9771–9786CrossRef
5.
go back to reference Reijniers J, Matulis A, Chang K, Peeters FM, Vasilopoulos P (2002) Confined magnetic guiding orbit states. Europhys Lett 59:749–753CrossRef Reijniers J, Matulis A, Chang K, Peeters FM, Vasilopoulos P (2002) Confined magnetic guiding orbit states. Europhys Lett 59:749–753CrossRef
6.
go back to reference Müller JE (1992) Effect of a nonuniform magnetic field on a two-dimensional electron gas in the ballistic regime. Phys Rev Lett 68:385–388CrossRef Müller JE (1992) Effect of a nonuniform magnetic field on a two-dimensional electron gas in the ballistic regime. Phys Rev Lett 68:385–388CrossRef
7.
go back to reference Evers F, Mirlin AD, Polyakov DG, Wölfle P (1999) Semiclassical theory of transport in a random magnetic field. Phys Rev B 60:8951–8969CrossRef Evers F, Mirlin AD, Polyakov DG, Wölfle P (1999) Semiclassical theory of transport in a random magnetic field. Phys Rev B 60:8951–8969CrossRef
8.
go back to reference Hatke AT, Zudov MA, Reno JL, Pfeiffer LN, West KW (2012) Giant negative magnetoresistance in high-mobility two-dimensional electron systems. Phys Rev B 85:081304RCrossRef Hatke AT, Zudov MA, Reno JL, Pfeiffer LN, West KW (2012) Giant negative magnetoresistance in high-mobility two-dimensional electron systems. Phys Rev B 85:081304RCrossRef
9.
go back to reference Nogaret A, Overend N, Gallagher BL, Main PC, Henini M (1998) Giant magnetoresistance and hysteretic effects in hybrid semiconductor/ferromagnet devices. Phys E 2:421–425CrossRef Nogaret A, Overend N, Gallagher BL, Main PC, Henini M (1998) Giant magnetoresistance and hysteretic effects in hybrid semiconductor/ferromagnet devices. Phys E 2:421–425CrossRef
10.
go back to reference Lu MW, Zhang LD (2003) Large magnetoresistance tunnelling through a magnetically modulated nanostructure. J Phys Condens Matter 15:1267–1275CrossRef Lu MW, Zhang LD (2003) Large magnetoresistance tunnelling through a magnetically modulated nanostructure. J Phys Condens Matter 15:1267–1275CrossRef
11.
go back to reference Lu MW, Cao XL, Huang XH, Jiang YQ, Yang SP (2016) Controllable giant magnetoresistance effect by the δ-doping in a magnetically confined semiconductor heterostructure. Appl Surf Sci 360:989–993CrossRef Lu MW, Cao XL, Huang XH, Jiang YQ, Yang SP (2016) Controllable giant magnetoresistance effect by the δ-doping in a magnetically confined semiconductor heterostructure. Appl Surf Sci 360:989–993CrossRef
12.
go back to reference Kong YH, Chen SY, Zhang GL, Fu X (2013) A tunable 3-terminal GMR device based on a hybrid magnetic-electric-barrier nanostructure. J Nanomater 2013:2CrossRef Kong YH, Chen SY, Zhang GL, Fu X (2013) A tunable 3-terminal GMR device based on a hybrid magnetic-electric-barrier nanostructure. J Nanomater 2013:2CrossRef
13.
go back to reference Liu GX, Zhang GL, Ma WY, Shen LH (2016) Spin filtering in a hybrid ferromagnet, Schottky metal and semiconductor nanostructure. Solid State Commun 231–232:6–9CrossRef Liu GX, Zhang GL, Ma WY, Shen LH (2016) Spin filtering in a hybrid ferromagnet, Schottky metal and semiconductor nanostructure. Solid State Commun 231–232:6–9CrossRef
14.
go back to reference Shen LH, Ma WY, Liu GX, Yuan L (2016) Spatial spin splitter based on a hybrid ferromagnet, Schottky metal and semiconductor nanostructure. J Magn Magn Mater 401:231–235CrossRef Shen LH, Ma WY, Liu GX, Yuan L (2016) Spatial spin splitter based on a hybrid ferromagnet, Schottky metal and semiconductor nanostructure. J Magn Magn Mater 401:231–235CrossRef
15.
go back to reference Metalidis G, Bruno P (2005) Green’s function technique for studying electron flow in two-dimensional mesoscopic samples. Phys Rev B 72:235304CrossRef Metalidis G, Bruno P (2005) Green’s function technique for studying electron flow in two-dimensional mesoscopic samples. Phys Rev B 72:235304CrossRef
16.
go back to reference Cresti A, Farchioni R, Grosso G, Parravicini GP (2003) Keldysh-Green function formalism for current profiles in mesoscopic systems. Phys Rev B 68:075306CrossRef Cresti A, Farchioni R, Grosso G, Parravicini GP (2003) Keldysh-Green function formalism for current profiles in mesoscopic systems. Phys Rev B 68:075306CrossRef
17.
go back to reference Cresti A, Grosso G, Parravicini GP (2006) Theoretical imaging of current profiles in two-dimensional devices. Eur Phys J B 53:537–549CrossRef Cresti A, Grosso G, Parravicini GP (2006) Theoretical imaging of current profiles in two-dimensional devices. Eur Phys J B 53:537–549CrossRef
18.
go back to reference Xu HY, Heinzel T, Evaldsson M, Ihnatsenka S, Zozoulenko IV (2007) Resonant reflection at magnetic barriers in quantum wires. Phys Rev B 75:205301CrossRef Xu HY, Heinzel T, Evaldsson M, Ihnatsenka S, Zozoulenko IV (2007) Resonant reflection at magnetic barriers in quantum wires. Phys Rev B 75:205301CrossRef
19.
go back to reference Xu HY, Heinzel T, Zozoulenko IV (2011) Electronic properties of quantum dots formed by magnetic double barriers in quantum wires. Phys Rev B 84:035319CrossRef Xu HY, Heinzel T, Zozoulenko IV (2011) Electronic properties of quantum dots formed by magnetic double barriers in quantum wires. Phys Rev B 84:035319CrossRef
20.
go back to reference Lewenkopf CH, Mucciolo ER (2013) The recursive Green’s function method for graphene. J Comput Electron 12:203–231CrossRef Lewenkopf CH, Mucciolo ER (2013) The recursive Green’s function method for graphene. J Comput Electron 12:203–231CrossRef
21.
go back to reference Zhang XW, Mou SY, Dai B (2013) Transport properties of two-dimensional electrons through multiple magnetic barriers. J Appl Phys 114:023706CrossRef Zhang XW, Mou SY, Dai B (2013) Transport properties of two-dimensional electrons through multiple magnetic barriers. J Appl Phys 114:023706CrossRef
22.
go back to reference Datta S (1995) Electronic transport in Mesoscopic systems. Cambridge University Press, CambridgeCrossRef Datta S (1995) Electronic transport in Mesoscopic systems. Cambridge University Press, CambridgeCrossRef
23.
go back to reference Li TC, Lu SP (2008) Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B 77:085408CrossRef Li TC, Lu SP (2008) Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B 77:085408CrossRef
24.
go back to reference Nogaret A (2010) Electron dynamics in inhomogeneous magnetic fields. J Phys: Condens Matter 22:253201 Nogaret A (2010) Electron dynamics in inhomogeneous magnetic fields. J Phys: Condens Matter 22:253201
Metadata
Title
Green’s function investigation of quantum transport and current patterns in 2D electronic system under spatially modulated magnetic fields
Authors
Y. L. Liu
X. W. Zhang
Publication date
07-02-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 11/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0876-1

Other articles of this Issue 11/2017

Journal of Materials Science 11/2017 Go to the issue

Premium Partners