Skip to main content
Top
Published in: Strength of Materials 1/2019

28-03-2019

Calculation of the γ-TiAl Lattice Resistance

Authors: R. C. Feng, L. L. Li, H. Y. Li, Z. M. Wang, Z. X. Zhu

Published in: Strength of Materials | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dislocation width and lattice resistance (Peierls stress) of a γ-TiAl alloy are calculated by the density ratio method. The lattice resistance is shown to decrease with the dislocation width. The relationship between the Peierls stress and dislocation width variation is defined by theoretical derivation. The yield stress is negatively correlated with the shear stress of the material. It can become a useful tool for choosing an appropriate shear stress under deformation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Z. Wu, R. Hu, T. Zhang, et al., “Microstructure determined fracture behavior of a high Nb containing TiAl alloy,” Mater. Sci. Eng. A, 666, 297–304 (2016).CrossRef Z. Wu, R. Hu, T. Zhang, et al., “Microstructure determined fracture behavior of a high Nb containing TiAl alloy,” Mater. Sci. Eng. A, 666, 297–304 (2016).CrossRef
2.
go back to reference H. Clemens and S. Mayer, “Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys,” Adv. Eng. Mater., 15, No. 4, 191–215 (2013).CrossRef H. Clemens and S. Mayer, “Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys,” Adv. Eng. Mater., 15, No. 4, 191–215 (2013).CrossRef
3.
go back to reference R. C. Feng, Z. Y. Rui, G. T. Zhang, “Improved method of fatigue life assessment for TiAl alloys,” Strength Mater., 46, No. 2, 183–189 (2014).CrossRef R. C. Feng, Z. Y. Rui, G. T. Zhang, “Improved method of fatigue life assessment for TiAl alloys,” Strength Mater., 46, No. 2, 183–189 (2014).CrossRef
4.
go back to reference M. Terner, S. Biamino, D. Ugues, et al., “Phase transitions assessment on γ-TiAl by Thermo Mechanical Analysis,” Intermetallics, 37, 7–10 (2013).CrossRef M. Terner, S. Biamino, D. Ugues, et al., “Phase transitions assessment on γ-TiAl by Thermo Mechanical Analysis,” Intermetallics, 37, 7–10 (2013).CrossRef
5.
go back to reference Y. Ma, D. Cuiuri, N. Hoye, et al. “The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding,” Mater. Sci. Eng. A, 631, 230–240 (2015).CrossRef Y. Ma, D. Cuiuri, N. Hoye, et al. “The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding,” Mater. Sci. Eng. A, 631, 230–240 (2015).CrossRef
6.
go back to reference S. Tian, X. Lv, H. Yu, et al.,“Creep behavior and deformation feature of TiAl–Nb alloy with various states at high temperature,” Mater. Sci. Eng. A, 651, 490–498 (2016).CrossRef S. Tian, X. Lv, H. Yu, et al.,“Creep behavior and deformation feature of TiAl–Nb alloy with various states at high temperature,” Mater. Sci. Eng. A, 651, 490–498 (2016).CrossRef
7.
go back to reference M. Kanani, A. Hartmaier, and R. Janisch, “Stacking fault based analysis of shear mechanisms at interfaces in lamellar TiAl alloys,” Acta Mater., 106, 208–218 (2016).CrossRef M. Kanani, A. Hartmaier, and R. Janisch, “Stacking fault based analysis of shear mechanisms at interfaces in lamellar TiAl alloys,” Acta Mater., 106, 208–218 (2016).CrossRef
8.
go back to reference J. L. Su and X. F. Lian, “Relationship between intrinsic characteristic sizes of elastic property and plastic property of γ-TiAl based alloy,” Chinese J. Nonferr. Metal., 25, No. 2, 338–343 (2015). J. L. Su and X. F. Lian, “Relationship between intrinsic characteristic sizes of elastic property and plastic property of γ-TiAl based alloy,” Chinese J. Nonferr. Metal., 25, No. 2, 338–343 (2015).
9.
go back to reference J. C. Schuster and M. Palm, “Reassessment of the binary Aluminum-Titanium phase diagram,” J. Phase Equilib. Diff., 27, No. 3, 255–277 (2006).CrossRef J. C. Schuster and M. Palm, “Reassessment of the binary Aluminum-Titanium phase diagram,” J. Phase Equilib. Diff., 27, No. 3, 255–277 (2006).CrossRef
10.
go back to reference E. Oren, E. Yahel, and G. Makov, “Dislocation kinematics: a molecular dynamics study in Cu,” Model. Simul. Mater. Sc., 25, No. 2, 025002 (2017).CrossRef E. Oren, E. Yahel, and G. Makov, “Dislocation kinematics: a molecular dynamics study in Cu,” Model. Simul. Mater. Sc., 25, No. 2, 025002 (2017).CrossRef
11.
go back to reference Z. Li, N. Mathew, and R. C. Picu, “Dependence of Peierls stress on lattice strains in silicon,” Comp. Mater. Sci., 77, 343–347 (2013).CrossRef Z. Li, N. Mathew, and R. C. Picu, “Dependence of Peierls stress on lattice strains in silicon,” Comp. Mater. Sci., 77, 343–347 (2013).CrossRef
12.
go back to reference G. Liu, X. Cheng, J. Wang, et al., “Improvement of nonlocal Peierls–Nabarro models,” Comp. Mater. Sci., 131, 69–77 (2017).CrossRef G. Liu, X. Cheng, J. Wang, et al., “Improvement of nonlocal Peierls–Nabarro models,” Comp. Mater. Sci., 131, 69–77 (2017).CrossRef
13.
go back to reference G. T. Zhang, Z. Y. Rui, R. C. Feng, et al., “Illustration of fracture mechanism in high temperature for TiAl alloys,” Appl. Mech. Mater., 457–458, 19–22 (2014).CrossRef G. T. Zhang, Z. Y. Rui, R. C. Feng, et al., “Illustration of fracture mechanism in high temperature for TiAl alloys,” Appl. Mech. Mater., 457–458, 19–22 (2014).CrossRef
14.
go back to reference L. Wang, “Calculation of the interplanar spacing of cubic crystal lattice,” J. Yunnan Nat. Univ., 24, No. 4, 346–348 (2015). L. Wang, “Calculation of the interplanar spacing of cubic crystal lattice,” J. Yunnan Nat. Univ., 24, No. 4, 346–348 (2015).
15.
go back to reference R. C. Feng, J. T. Lu, H. Y. Li, et al., “Effect of the microcrack inclination angle on crack propagation behavior of TiAl alloy,” Strength Mater., 49, No. 1, 75–82 (2017).CrossRef R. C. Feng, J. T. Lu, H. Y. Li, et al., “Effect of the microcrack inclination angle on crack propagation behavior of TiAl alloy,” Strength Mater., 49, No. 1, 75–82 (2017).CrossRef
16.
go back to reference D. Hull and D. J. Bacon, Introduction to Dislocations, Butterworth-Heinemann (2011). D. Hull and D. J. Bacon, Introduction to Dislocations, Butterworth-Heinemann (2011).
17.
go back to reference R. E. Schafrik, “Dynamic elastic moduli of the titanium aluminides,” Metall. Trans. A, 8, No. 6, 1003–1006 (1977).CrossRef R. E. Schafrik, “Dynamic elastic moduli of the titanium aluminides,” Metall. Trans. A, 8, No. 6, 1003–1006 (1977).CrossRef
18.
go back to reference K. Tanaka, K. Okamoto, H. Inui, et al., “Elastic constants and their temperature dependence for the intermetallic compound Ti3Al,” Philos. Mag. A, 73, No. 5, 1475–1488 (1996).CrossRef K. Tanaka, K. Okamoto, H. Inui, et al., “Elastic constants and their temperature dependence for the intermetallic compound Ti3Al,” Philos. Mag. A, 73, No. 5, 1475–1488 (1996).CrossRef
19.
go back to reference D. François, A. Pineau, and A. Zaoui, Mechanical Behaviour of Materials, Springer, Dordrecht (1998). D. François, A. Pineau, and A. Zaoui, Mechanical Behaviour of Materials, Springer, Dordrecht (1998).
20.
go back to reference H.-D. Dietze, “Die Temperaturabhängigkeit der Versetzungsstruktur,” Z. Phys., 132, No. 1, 107–110 (1952).CrossRef H.-D. Dietze, “Die Temperaturabhängigkeit der Versetzungsstruktur,” Z. Phys., 132, No. 1, 107–110 (1952).CrossRef
21.
go back to reference J. N. Wang, “Prediction of Peierls stresses for different crystals,” Mater. Sci. Eng. A, 206, No. 2, 259–269 (1996).CrossRef J. N. Wang, “Prediction of Peierls stresses for different crystals,” Mater. Sci. Eng. A, 206, No. 2, 259–269 (1996).CrossRef
Metadata
Title
Calculation of the γ-TiAl Lattice Resistance
Authors
R. C. Feng
L. L. Li
H. Y. Li
Z. M. Wang
Z. X. Zhu
Publication date
28-03-2019
Publisher
Springer US
Published in
Strength of Materials / Issue 1/2019
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00049-w

Other articles of this Issue 1/2019

Strength of Materials 1/2019 Go to the issue

Premium Partners