Skip to main content
Top
Published in: Journal of Computational Neuroscience 3/2010

01-06-2010

Calibration of the head direction network: a role for symmetric angular head velocity cells

Authors: Peter Stratton, Gordon Wyeth, Janet Wiles

Published in: Journal of Computational Neuroscience | Issue 3/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Continuous attractor networks require calibration. Computational models of the head direction (HD) system of the rat usually assume that the connections that maintain HD neuron activity are pre-wired and static. Ongoing activity in these models relies on precise continuous attractor dynamics. It is currently unknown how such connections could be so precisely wired, and how accurate calibration is maintained in the face of ongoing noise and perturbation. Our adaptive attractor model of the HD system that uses symmetric angular head velocity (AHV) cells as a training signal shows that the HD system can learn to support stable firing patterns from poorly-performing, unstable starting conditions. The proposed calibration mechanism suggests a requirement for symmetric AHV cells, the existence of which has previously been unexplained, and predicts that symmetric and asymmetric AHV cells should be distinctly different (in morphology, synaptic targets and/or methods of action on postsynaptic HD cells) due to their distinctly different functions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The authors wish to thank an anonymous reviewer for suggesting this interpretation of the calibration algorithm.
 
2
This experiment assumes that slow rotation of the visual environment induces a slow rotation of head direction representation. The alternative outcome, that the animal simply becomes disoriented, could possibly be avoided by using prominent visual cues and an extended training period, prior to testing, during which there is no cue rotation.
 
Literature
go back to reference Baddeley, R. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings: Biological Sciences, 264(1389), 1775–1783.CrossRefPubMed Baddeley, R. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings: Biological Sciences, 264(1389), 1775–1783.CrossRefPubMed
go back to reference Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: A hebbian learning rule. Annual Review of Neuroscience, 31, 25–46.CrossRefPubMed Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: A hebbian learning rule. Annual Review of Neuroscience, 31, 25–46.CrossRefPubMed
go back to reference Cohen-Cory, S. (2002). The developing synapse: Construction and modulation of synaptic structures and circuits. Science, 298(5594), 770.CrossRefPubMed Cohen-Cory, S. (2002). The developing synapse: Construction and modulation of synaptic structures and circuits. Science, 298(5594), 770.CrossRefPubMed
go back to reference Engert, F., & Bonhoeffer, T. (1997). Synapse specificity of long-term potentiation breaks down at short distances. Nature, 388(6639), 279–284.CrossRefPubMed Engert, F., & Bonhoeffer, T. (1997). Synapse specificity of long-term potentiation breaks down at short distances. Nature, 388(6639), 279–284.CrossRefPubMed
go back to reference Feng, J., & Li, G. (2003). The relationship between neuronal calcium concentration and firing rate during stochastic synaptic inputs. Journal of Theoretical Biology, 223(3), 367–375.CrossRefPubMed Feng, J., & Li, G. (2003). The relationship between neuronal calcium concentration and firing rate during stochastic synaptic inputs. Journal of Theoretical Biology, 223(3), 367–375.CrossRefPubMed
go back to reference Georgopoulos, A. P., Schwartz, A. B., et al. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419.CrossRefPubMed Georgopoulos, A. P., Schwartz, A. B., et al. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419.CrossRefPubMed
go back to reference Goodridge, J. P., & Touretzky, D. S. (2000). Modeling attractor deformation in the rodent head-direction system. Journal of Neurophysiology, 83(6), 3402–3410.PubMed Goodridge, J. P., & Touretzky, D. S. (2000). Modeling attractor deformation in the rodent head-direction system. Journal of Neurophysiology, 83(6), 3402–3410.PubMed
go back to reference Hafting, T., Fyhn, M., et al. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806.CrossRefPubMed Hafting, T., Fyhn, M., et al. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806.CrossRefPubMed
go back to reference Hahnloser, R. H. R. (2003). Emergence of neural integration in the head-direction system by visual supervision. Neuroscience, 120(3), 877–891.CrossRefPubMed Hahnloser, R. H. R. (2003). Emergence of neural integration in the head-direction system by visual supervision. Neuroscience, 120(3), 877–891.CrossRefPubMed
go back to reference O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain research, 34(1), 171.CrossRefPubMed O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain research, 34(1), 171.CrossRefPubMed
go back to reference Redish, A. D., Elga, A. N., et al. (1996). A coupled attractor model of the rodent head direction system. Network: Computation in Neural Systems, 7(4), 671–685.CrossRef Redish, A. D., Elga, A. N., et al. (1996). A coupled attractor model of the rodent head direction system. Network: Computation in Neural Systems, 7(4), 671–685.CrossRef
go back to reference Royer, S., & Pare, D. (2003). Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature, 422(6931), 518–522.CrossRefPubMed Royer, S., & Pare, D. (2003). Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature, 422(6931), 518–522.CrossRefPubMed
go back to reference Scott, E. K., & Luo, L. (2001). How do dendrites take their shape? Nature Neuroscience, 4, 359–365.CrossRefPubMed Scott, E. K., & Luo, L. (2001). How do dendrites take their shape? Nature Neuroscience, 4, 359–365.CrossRefPubMed
go back to reference Sharp, P. E., Blair, H. T., et al. (2001). The anatomical and computational basis of the rat head-direction cell signal. Trends in Neurosciences, 24(5), 289–294.CrossRefPubMed Sharp, P. E., Blair, H. T., et al. (2001). The anatomical and computational basis of the rat head-direction cell signal. Trends in Neurosciences, 24(5), 289–294.CrossRefPubMed
go back to reference Skaggs, W. E., Knierim, J. J., et al. (1995). A model of the neural basis of the rat’s sense of direction. Advances in Neural Information Processing Systems, 7, 51–58. Skaggs, W. E., Knierim, J. J., et al. (1995). A model of the neural basis of the rat’s sense of direction. Advances in Neural Information Processing Systems, 7, 51–58.
go back to reference Song, P., & Wang, X. J. (2005). Angular path integration by moving hill of activity: A spiking neuron model without recurrent excitation of the head-direction system. Journal of Neuroscience, 25(4), 1002–1014.CrossRefPubMed Song, P., & Wang, X. J. (2005). Angular path integration by moving hill of activity: A spiking neuron model without recurrent excitation of the head-direction system. Journal of Neuroscience, 25(4), 1002–1014.CrossRefPubMed
go back to reference Stein, R. B. (1967). The frequency of nerve action potentials generated by applied currents. Proceedings of the Royal Society of London - Series B, Biological Sciences (1934–1990), 167(1006), 64–86.CrossRef Stein, R. B. (1967). The frequency of nerve action potentials generated by applied currents. Proceedings of the Royal Society of London - Series B, Biological Sciences (1934–1990), 167(1006), 64–86.CrossRef
go back to reference Stringer, S. M., Trappenberg, T. P., et al. (2002). Self-organizing continuous attractor networks and path integration: One-dimensional models of head direction cells. Network: Computation in Neural Systems, 13(2), 217–242. Stringer, S. M., Trappenberg, T. P., et al. (2002). Self-organizing continuous attractor networks and path integration: One-dimensional models of head direction cells. Network: Computation in Neural Systems, 13(2), 217–242.
go back to reference Suzuki, H., Thiele, T. R., et al. (2008). Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature, 454(7200), 114.CrossRefPubMed Suzuki, H., Thiele, T. R., et al. (2008). Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature, 454(7200), 114.CrossRefPubMed
go back to reference Taube, J. S. (2007). The head direction signal: Origins and sensory-motor integration. Annual Review of Neuroscience, 30, 181–207.CrossRefPubMed Taube, J. S. (2007). The head direction signal: Origins and sensory-motor integration. Annual Review of Neuroscience, 30, 181–207.CrossRefPubMed
go back to reference Taube, J. S., & Bassett, J. P. (2003). Persistent neural activity in head direction cells. Cerebral Cortex, 13(11), 1162–1172.CrossRefPubMed Taube, J. S., & Bassett, J. P. (2003). Persistent neural activity in head direction cells. Cerebral Cortex, 13(11), 1162–1172.CrossRefPubMed
go back to reference Taube, J. S., Muller, R. U., et al. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420–435.PubMed Taube, J. S., Muller, R. U., et al. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420–435.PubMed
go back to reference Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97–107.CrossRefPubMed Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97–107.CrossRefPubMed
go back to reference Wang, X. J. (1999). Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory. Journal of Neuroscience, 19(21), 9587–9603.PubMed Wang, X. J. (1999). Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory. Journal of Neuroscience, 19(21), 9587–9603.PubMed
go back to reference Xie, X., Hahnloser, R. H. R., et al. (2002). Double-ring network model of the head-direction system. Physical Review E, 66(4), 41902(1–9).CrossRef Xie, X., Hahnloser, R. H. R., et al. (2002). Double-ring network model of the head-direction system. Physical Review E, 66(4), 41902(1–9).CrossRef
go back to reference Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory. Journal of Neuroscience, 16(6), 2112–2126.PubMed Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory. Journal of Neuroscience, 16(6), 2112–2126.PubMed
Metadata
Title
Calibration of the head direction network: a role for symmetric angular head velocity cells
Authors
Peter Stratton
Gordon Wyeth
Janet Wiles
Publication date
01-06-2010
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 3/2010
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0234-7

Other articles of this Issue 3/2010

Journal of Computational Neuroscience 3/2010 Go to the issue

Premium Partner