Skip to main content
Top
Published in: Journal of Computational Neuroscience 3/2010

01-06-2010

Mechanisms of very fast oscillations in networks of axons coupled by gap junctions

Authors: Erin Munro, Christoph Börgers

Published in: Journal of Computational Neuroscience | Issue 3/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Because electrical coupling among the neurons of the brain is much faster than chemical synaptic coupling, it is natural to hypothesize that gap junctions may play a crucial role in mechanisms underlying very fast oscillations (VFOs), i.e., oscillations at more than 80 Hz. There is now a substantial body of experimental and modeling literature supporting this hypothesis. A series of modeling papers, starting with work by Roger Traub and collaborators, have suggested that VFOs may arise from expanding waves propagating through an “axonal plexus”, a large random network of electrically coupled axons. Traub et al. also proposed a cellular automaton (CA) model to study the mechanisms of VFOs in the axonal plexus. In this model, the expanding waves take the appearance of topologically circular “target patterns”. Random external stimuli initiate each wave. We therefore call this kind of VFO “externally driven”. Using a computational model, we show that an axonal plexus can also exhibit a second, distinctly different kind of VFO in a wide parameter range. These VFOs arise from activity propagating around cycles in the network. Once triggered, they persist without any source of excitation. With idealized, regular connectivity, they take the appearance of spiral waves. We call these VFOs “re-entrant”. The behavior of the axonal plexus depends on the reliability with which action potentials propagate from one axon to the next, which, in turn, depends on the somatic membrane potential V s and the gap junction conductance g gj . To study these dependencies, we impose a fixed value of V s , then study the effects of varying V s and g gj . Not surprisingly, propagation becomes more reliable with rising V s and g gj . Externally driven VFOs occur when V s and g gj are so high that propagation never fails. For lower V s or g gj , propagation is nearly reliable, but fails in rare circumstances. Surprisingly, the parameter regime where this occurs is fairly large. Even a single propagation failure can trigger re-entrant VFOs in this regime. Lowering V s and g gj further, one finds a third parameter regime in which propagation is unreliable, and no VFOs arise. We analyze these three parameter regimes by means of computations using model networks adapted from Traub et al., as well as much smaller model networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
2
Re-entrant VFO frequencies refer to the last 25 ms of the simulation, in order to get a pure re-entrant oscillation with no transitory externally driven waves.
 
Literature
go back to reference Bragin, A., Engel, J., Jr., Wilson, C. L., Fried, I., & Mathern, G. W. (1999). Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia, 40(2), 127–137.CrossRefPubMed Bragin, A., Engel, J., Jr., Wilson, C. L., Fried, I., & Mathern, G. W. (1999). Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia, 40(2), 127–137.CrossRefPubMed
go back to reference Bragin, A., Mody, I., Wilson, C. L., & Engel, J., Jr. (2002). Local generation of fast ripples in epileptic brain. Journal of Neuroscience, 22(5), 2012–2021.PubMed Bragin, A., Mody, I., Wilson, C. L., & Engel, J., Jr. (2002). Local generation of fast ripples in epileptic brain. Journal of Neuroscience, 22(5), 2012–2021.PubMed
go back to reference Bragin, A., Wilson, C. L., Almajano, J., Mody, I., & Engel, J., Jr. (2004). High-frequency oscillations after status epilepticus: Epileptogenesis and seizure genesis. Epilepsia, 45(9), 1017–1023.CrossRefPubMed Bragin, A., Wilson, C. L., Almajano, J., Mody, I., & Engel, J., Jr. (2004). High-frequency oscillations after status epilepticus: Epileptogenesis and seizure genesis. Epilepsia, 45(9), 1017–1023.CrossRefPubMed
go back to reference Clemens, Z., Mölle, M., Eross, L., Barsi, P., Halász, P., & Born, J. (2007). Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain, 130(Pt. 11), 2868–2878.CrossRefPubMed Clemens, Z., Mölle, M., Eross, L., Barsi, P., Halász, P., & Born, J. (2007). Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain, 130(Pt. 11), 2868–2878.CrossRefPubMed
go back to reference de Solages, C., Szapiro, G., Brunel, N., Hakim, V., Isope, P., Buisseret, P., et al. (2008). High-frequency organization and synchrony of activity in the Purkinje cell layer of the cerebellum. Neuron, 58(5), 775–788.CrossRefPubMed de Solages, C., Szapiro, G., Brunel, N., Hakim, V., Isope, P., Buisseret, P., et al. (2008). High-frequency organization and synchrony of activity in the Purkinje cell layer of the cerebellum. Neuron, 58(5), 775–788.CrossRefPubMed
go back to reference Draguhn, A., Traub, R. D., Schmitz, D., & Jefferys, J. G. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394(6689), 189–192.CrossRefPubMed Draguhn, A., Traub, R. D., Schmitz, D., & Jefferys, J. G. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394(6689), 189–192.CrossRefPubMed
go back to reference Engel, J., Jr., Bragin, A., Staba, R., & Mody, I. (2009). High-frequency oscillations: What is normal and what is not? Epilepsia, 50(4), 598–604.CrossRefPubMed Engel, J., Jr., Bragin, A., Staba, R., & Mody, I. (2009). High-frequency oscillations: What is normal and what is not? Epilepsia, 50(4), 598–604.CrossRefPubMed
go back to reference Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61. Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.
go back to reference Fisher, R. S., Webber, W. R., Lesser, R. P., Arroyo, S., & Uematsu, S. (1992). High-frequency EEG activity at the start of seizures. Journal of Clinical Neurophysiology, 9(3), 441–448.CrossRefPubMed Fisher, R. S., Webber, W. R., Lesser, R. P., Arroyo, S., & Uematsu, S. (1992). High-frequency EEG activity at the start of seizures. Journal of Clinical Neurophysiology, 9(3), 441–448.CrossRefPubMed
go back to reference Gansert, J., Golowasch, J., & Nadim, F. (2007). Sustained rhythmic activity in gap-junctionally coupled networks of model neurons on depends on the diameter of coupled dendrites. Journal of Neurophysiology, 98(6), 3450–3460.CrossRefPubMed Gansert, J., Golowasch, J., & Nadim, F. (2007). Sustained rhythmic activity in gap-junctionally coupled networks of model neurons on depends on the diameter of coupled dendrites. Journal of Neurophysiology, 98(6), 3450–3460.CrossRefPubMed
go back to reference Garrey, W. E. (1924). Auricular fibrillation. Physiological Reviews, 4(2), 215–250. Garrey, W. E. (1924). Auricular fibrillation. Physiological Reviews, 4(2), 215–250.
go back to reference Greenberg, J. M., & Hastings, S. P. (1978). Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal on Applied Mathematics, 34, 515–523.CrossRef Greenberg, J. M., & Hastings, S. P. (1978). Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal on Applied Mathematics, 34, 515–523.CrossRef
go back to reference Grenier, F., Timofeev, I., & Steriade, M. (2001). Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates. Journal of Neurophysiology, 86(4), 1884–1898.PubMed Grenier, F., Timofeev, I., & Steriade, M. (2001). Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates. Journal of Neurophysiology, 86(4), 1884–1898.PubMed
go back to reference Grenier, F., Timofeev, I., & Steriade, M. (2003). Neocortical very fast oscillations (ripples, 80–200 Hz) during seizures: Intracellular correlates. Journal of Neurophysiology, 89(2), 841–852.CrossRefPubMed Grenier, F., Timofeev, I., & Steriade, M. (2003). Neocortical very fast oscillations (ripples, 80–200 Hz) during seizures: Intracellular correlates. Journal of Neurophysiology, 89(2), 841–852.CrossRefPubMed
go back to reference Hamzei-Sichani, F., Kamasawa, N., Janssen, W. G., Yasumura, T., Davidson, K. G., Hof, P. R., et al. (2007). Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze-fracture replica immunogold labeling. Proceedings of the National Academy of Sciences of the United States of America, 104(30), 12548–12553.CrossRefPubMed Hamzei-Sichani, F., Kamasawa, N., Janssen, W. G., Yasumura, T., Davidson, K. G., Hof, P. R., et al. (2007). Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze-fracture replica immunogold labeling. Proceedings of the National Academy of Sciences of the United States of America, 104(30), 12548–12553.CrossRefPubMed
go back to reference Jacobs, J., LeVan, P., Chander, R., Hall, J., Dubeau, F., & Gotman, J. (2008). Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia, 49(11), 1893–1907.CrossRefPubMed Jacobs, J., LeVan, P., Chander, R., Hall, J., Dubeau, F., & Gotman, J. (2008). Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia, 49(11), 1893–1907.CrossRefPubMed
go back to reference Kandel, A., & Buzsáki, G. (1997). Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. Journal of Neuroscience, 17(17), 6783–6797.PubMed Kandel, A., & Buzsáki, G. (1997). Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. Journal of Neuroscience, 17(17), 6783–6797.PubMed
go back to reference Le Van Quyen, M., Bragin, A., Staba, R., Crépon, B., Wilson, C. L., & Engel, J., Jr. (2008). Cell type-specific firing during ripple oscillations in the hippocampal formation of humans. Journal of Neuroscience, 28(24), 6104–6110.CrossRef Le Van Quyen, M., Bragin, A., Staba, R., Crépon, B., Wilson, C. L., & Engel, J., Jr. (2008). Cell type-specific firing during ripple oscillations in the hippocampal formation of humans. Journal of Neuroscience, 28(24), 6104–6110.CrossRef
go back to reference Lewis, T. J., & Rinzel, J. (2000). Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions. Network, 11(4), 299–320.CrossRefPubMed Lewis, T. J., & Rinzel, J. (2000). Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions. Network, 11(4), 299–320.CrossRefPubMed
go back to reference Lewis, T. J., & Rinzel, J. (2001). Topological target patterns and population oscillations in a network with random gap junctional coupling. Neurocomputers, 38–40, 763–768.CrossRef Lewis, T. J., & Rinzel, J. (2001). Topological target patterns and population oscillations in a network with random gap junctional coupling. Neurocomputers, 38–40, 763–768.CrossRef
go back to reference Maex, R., & De Schutter, E. (2007). Mechanism of spontaneous and self-sustained oscillations in networks connected through axo-axonal gap junctions. European Journal of Neuroscience, 25(11), 3347–3358.CrossRefPubMed Maex, R., & De Schutter, E. (2007). Mechanism of spontaneous and self-sustained oscillations in networks connected through axo-axonal gap junctions. European Journal of Neuroscience, 25(11), 3347–3358.CrossRefPubMed
go back to reference Maier, N., Nimmrich, V., & Draguhn, A. (2003). Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. Journal of Physiology, 550(Pt. 3), 873–887.CrossRefPubMed Maier, N., Nimmrich, V., & Draguhn, A. (2003). Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. Journal of Physiology, 550(Pt. 3), 873–887.CrossRefPubMed
go back to reference Middleton, S. J., Racca, C., Cunningham, M. O., Traub, R. D., Monyer, H., Knöpfel, T., et al. (2008). High-frequency network oscillations in cerebellar cortex. Neuron, 58(5), 763-774.CrossRefPubMed Middleton, S. J., Racca, C., Cunningham, M. O., Traub, R. D., Monyer, H., Knöpfel, T., et al. (2008). High-frequency network oscillations in cerebellar cortex. Neuron, 58(5), 763-774.CrossRefPubMed
go back to reference Moe, G. K., Rheinboldt, W. C., & Abildskov, J. A. (1964). A computer model of atrial fibrillation. American Heart Journal, 67, 200–220.CrossRefPubMed Moe, G. K., Rheinboldt, W. C., & Abildskov, J. A. (1964). A computer model of atrial fibrillation. American Heart Journal, 67, 200–220.CrossRefPubMed
go back to reference Munro, E. C. (2008). The axonal plexus: A description of the behavior of a network of axons connected by gap junctions. Ph.D. thesis, Tufts University. Munro, E. C. (2008). The axonal plexus: A description of the behavior of a network of axons connected by gap junctions. Ph.D. thesis, Tufts University.
go back to reference Muratov, C. B., Vanden-Eijnden, E., & Weinan, E. (2007). Noise can play an organizing role for the recurrent dynamics in excitable media. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 702–707.CrossRefPubMed Muratov, C. B., Vanden-Eijnden, E., & Weinan, E. (2007). Noise can play an organizing role for the recurrent dynamics in excitable media. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 702–707.CrossRefPubMed
go back to reference Nimmrich, V., Maier, N., Schmitz, D., & Draguhn, A. (2005). Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. Journal of Physiology, 563(Pt. 3), 663–670.CrossRefPubMed Nimmrich, V., Maier, N., Schmitz, D., & Draguhn, A. (2005). Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. Journal of Physiology, 563(Pt. 3), 663–670.CrossRefPubMed
go back to reference Ponomarenko, A. A., Korotkova, T. M., Sergeeva, O. A., & Haas, H. L. (2004). Multiple GABA A receptor subtypes regulate hippocampal ripple oscillations. European Journal of Neuroscience, 20(8), 2141–2148.CrossRefPubMed Ponomarenko, A. A., Korotkova, T. M., Sergeeva, O. A., & Haas, H. L. (2004). Multiple GABA A receptor subtypes regulate hippocampal ripple oscillations. European Journal of Neuroscience, 20(8), 2141–2148.CrossRefPubMed
go back to reference Roopun, A. K., Simonotto, J. D., Pierce, M. L., Jenkins, A., Nicholson, C., Schofield, I. S., et al. (2010). A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 338–343.CrossRefPubMed Roopun, A. K., Simonotto, J. D., Pierce, M. L., Jenkins, A., Nicholson, C., Schofield, I. S., et al. (2010). A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 338–343.CrossRefPubMed
go back to reference Schmitz, D., Schuchmann, S., Fisahn, A., Draguhn, A., Buhl, E. H., Petrasch-Parwez, E., et al. (2001). Axo-axonal coupling: A novel mechanism for ultrafast neuronal communication. Neuron, 31(5), 831–840.CrossRefPubMed Schmitz, D., Schuchmann, S., Fisahn, A., Draguhn, A., Buhl, E. H., Petrasch-Parwez, E., et al. (2001). Axo-axonal coupling: A novel mechanism for ultrafast neuronal communication. Neuron, 31(5), 831–840.CrossRefPubMed
go back to reference Staba, R. J., Wilson, C. L., Bragin, A., Jhung, D., Fried, I., & Engel, J., Jr. (2004). High-frequency oscillations recorded in human medial temporal lobe during sleep. Annals of Neurology, 56(1), 108–115.CrossRefPubMed Staba, R. J., Wilson, C. L., Bragin, A., Jhung, D., Fried, I., & Engel, J., Jr. (2004). High-frequency oscillations recorded in human medial temporal lobe during sleep. Annals of Neurology, 56(1), 108–115.CrossRefPubMed
go back to reference Traub, R. D., Schmitz, D., Jefferys, J. G., & Draguhn, A. (1999). High-frequency population oscillations are predicted to occur in hippocampal pyramidal neural networks interconnected by axo-axonal gap junctions. Neuroscience, 92(2), 407–426.CrossRefPubMed Traub, R. D., Schmitz, D., Jefferys, J. G., & Draguhn, A. (1999). High-frequency population oscillations are predicted to occur in hippocampal pyramidal neural networks interconnected by axo-axonal gap junctions. Neuroscience, 92(2), 407–426.CrossRefPubMed
go back to reference Traub, R. D., Bibbig, A., Fisahn, A., LeBeau, F. E., Whittington, M. A., & Buhl, E. H. (2000). A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. European Journal of Neuroscience, 12(11), 4093–4106.CrossRefPubMed Traub, R. D., Bibbig, A., Fisahn, A., LeBeau, F. E., Whittington, M. A., & Buhl, E. H. (2000). A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. European Journal of Neuroscience, 12(11), 4093–4106.CrossRefPubMed
go back to reference Traub, R. D., & Bibbig, A. (2000). A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon–axon gap junctions between pyramidal neurons. Journal of Neuroscience, 20(6), 2086–2093.PubMed Traub, R. D., & Bibbig, A. (2000). A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon–axon gap junctions between pyramidal neurons. Journal of Neuroscience, 20(6), 2086–2093.PubMed
go back to reference Traub, R. D., Whittington, M. A., Buhl, E. H., LeBeau, F. E., Bibbig, A., Boyd, S., et al. (2001). A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia, 42(2), 153–170.CrossRefPubMed Traub, R. D., Whittington, M. A., Buhl, E. H., LeBeau, F. E., Bibbig, A., Boyd, S., et al. (2001). A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia, 42(2), 153–170.CrossRefPubMed
go back to reference Traub, R. D., Cunningham, M. O., Gloveli, T., LeBeau, F. E., Bibbig, A., Buhl, E. H., et al. (2003a). GABA-enhanced collective behavior in neuronal axons underlies persistent gamma frequency oscillations. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11047–11052.CrossRefPubMed Traub, R. D., Cunningham, M. O., Gloveli, T., LeBeau, F. E., Bibbig, A., Buhl, E. H., et al. (2003a). GABA-enhanced collective behavior in neuronal axons underlies persistent gamma frequency oscillations. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11047–11052.CrossRefPubMed
go back to reference Traub, R. D., Pais, I., Bibbig, A., LeBeau, F. E., Buhl, E. H., Hormuzdi, S. G., et al. (2003b). Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1370–1374.CrossRefPubMed Traub, R. D., Pais, I., Bibbig, A., LeBeau, F. E., Buhl, E. H., Hormuzdi, S. G., et al. (2003b). Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1370–1374.CrossRefPubMed
go back to reference Traub, R. D., Contreras, D., & Whittington, M. A. (2005). Combined experimental/simulation studies of cellular and network mechanisms of epileptogenesis in vitro and in vivo. Journal of Clinical Neurophysiology, 22(5), 330–342.PubMed Traub, R. D., Contreras, D., & Whittington, M. A. (2005). Combined experimental/simulation studies of cellular and network mechanisms of epileptogenesis in vitro and in vivo. Journal of Clinical Neurophysiology, 22(5), 330–342.PubMed
go back to reference Traub, R. D., Middleton, S. J., Knöpfel, T., & Whittington, M. A. (2008). Model of very fast (> 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells. European Journal of Neuroscience, 28(8), 1603–1661.CrossRefPubMed Traub, R. D., Middleton, S. J., Knöpfel, T., & Whittington, M. A. (2008). Model of very fast (> 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells. European Journal of Neuroscience, 28(8), 1603–1661.CrossRefPubMed
go back to reference Traub, R. D., Duncan, R., Russell, A. J., Baldeweg, T., Tu, Y., Cunningham, M. O., et al. (2009). Spatiotemporal patterns of electrocorticographic very fast oscillations (>80 Hz) consistent with a network model based on electrical coupling between principal neurons. Epilepsia, published online December 2009. Traub, R. D., Duncan, R., Russell, A. J., Baldeweg, T., Tu, Y., Cunningham, M. O., et al. (2009). Spatiotemporal patterns of electrocorticographic very fast oscillations (>80 Hz) consistent with a network model based on electrical coupling between principal neurons. Epilepsia, published online December 2009.
go back to reference Tseng, S. H., Tsai, L. Y., & Yeh, R. R. (2008). Induction of high-frequency oscillations in a junction-coupled network. Journal of Neuroscience, 28(28), 7165–7173.CrossRefPubMed Tseng, S. H., Tsai, L. Y., & Yeh, R. R. (2008). Induction of high-frequency oscillations in a junction-coupled network. Journal of Neuroscience, 28(28), 7165–7173.CrossRefPubMed
go back to reference Urrestarazu, E., Chander, R., Dubeau, F., & Gotman, J. (2008). Interictal high-frequency oscillations (100–500 Hz) in the intracerebral EEG of epileptic patients. Brain, 130(Pt. 9), 2354–2366. Urrestarazu, E., Chander, R., Dubeau, F., & Gotman, J. (2008). Interictal high-frequency oscillations (100–500 Hz) in the intracerebral EEG of epileptic patients. Brain, 130(Pt. 9), 2354–2366.
go back to reference Veenhuyzen, G. D., Simpson, C. S., & Abdollah, H. (2004). Atrial fibrillation. CMAJ, 171(7), 755–760.PubMed Veenhuyzen, G. D., Simpson, C. S., & Abdollah, H. (2004). Atrial fibrillation. CMAJ, 171(7), 755–760.PubMed
go back to reference Worrell, G. A., Parish, L., Cranstoun, S. D., Jonas, R., Baltuch, G., & Litt, B. (2004). High-frequency oscillations and seizure generation in neocortical epilepsy. Brain, 127(Pt. 7), 1496–1506.CrossRefPubMed Worrell, G. A., Parish, L., Cranstoun, S. D., Jonas, R., Baltuch, G., & Litt, B. (2004). High-frequency oscillations and seizure generation in neocortical epilepsy. Brain, 127(Pt. 7), 1496–1506.CrossRefPubMed
go back to reference Ylinen, A., Bragin, A., Nádasdy, Z., Jandó, G., Szabó, I., Sik, A., et al. (1995). Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: Network and intracellular mechanisms. Journal of Neuroscience, 15(1 Pt. 1), 30–46.PubMed Ylinen, A., Bragin, A., Nádasdy, Z., Jandó, G., Szabó, I., Sik, A., et al. (1995). Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: Network and intracellular mechanisms. Journal of Neuroscience, 15(1 Pt. 1), 30–46.PubMed
Metadata
Title
Mechanisms of very fast oscillations in networks of axons coupled by gap junctions
Authors
Erin Munro
Christoph Börgers
Publication date
01-06-2010
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 3/2010
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0235-6

Other articles of this Issue 3/2010

Journal of Computational Neuroscience 3/2010 Go to the issue

Premium Partner