Skip to main content
Top

2017 | OriginalPaper | Chapter

7. Capacitively Coupled Chopper Instrumentation Amplifiers for Low-Voltage Applications

Authors : Qinwen Fan, Kofi A. A. Makinwa, Johan H. Huijsing

Published in: Capacitively-Coupled Chopper Amplifiers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chapter 6 has explored the use of a CCIA for high-side current sensing applications, where its wide CMVR and high power efficiency can be optimally leveraged.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Denison et al., “A 2 µW 100nV/√Hz chopper stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE JSSC, vol. 42, no. 12, pp. 2934-2945, Dec. 2007. T. Denison et al., “A 2 µW 100nV/√Hz chopper stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE JSSC, vol. 42, no. 12, pp. 2934-2945, Dec. 2007.
2.
go back to reference Q. Fan, J. H. Huijsing and K. A. A. Makinwa, “A 1.8µ W 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes,” JSSC, vol. 46, no. 7, pp. 1534-1543, Jul. 2011. Q. Fan, J. H. Huijsing and K. A. A. Makinwa, “A 1.8µ W 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes,” JSSC, vol. 46, no. 7, pp. 1534-1543, Jul. 2011.
3.
go back to reference G. Chen, S. Hanson, D. Blaauw and D. Sylvester, “Circuit design advances for wireless sensing applications,” IEEE Proc. pp. 1808-1827, Nov., 2010. G. Chen, S. Hanson, D. Blaauw and D. Sylvester, “Circuit design advances for wireless sensing applications,” IEEE Proc. pp. 1808-1827, Nov., 2010.
4.
go back to reference Y. Tachwali, H. Refai and J. E. Fagan, “Minimizing HVAC energy consumption using a wireless sensor network,” Proc. 33rd Annu. Conf. IEEE Ind. Electron. Soc., pp. 439-444, Nov. 2007. Y. Tachwali, H. Refai and J. E. Fagan, “Minimizing HVAC energy consumption using a wireless sensor network,” Proc. 33rd Annu. Conf. IEEE Ind. Electron. Soc., pp. 439-444, Nov. 2007.
5.
go back to reference N. Vlajic and D. Xia, “Wireless sensor networks: to cluster or not to cluster?,” Proc. of WoWMoM’06, 2006. N. Vlajic and D. Xia, “Wireless sensor networks: to cluster or not to cluster?,” Proc. of WoWMoM’06, 2006.
6.
go back to reference S. Drago et al., “A 200 μA duty-cycled PLL for wireless sensor nodes in 65 nm CMOS,” IEEE JSSC, vol. 45, is. 7, pp. 1305-1315, Jul. 2010. S. Drago et al., “A 200 μA duty-cycled PLL for wireless sensor nodes in 65 nm CMOS,” IEEE JSSC, vol. 45, is. 7, pp. 1305-1315, Jul. 2010.
7.
go back to reference X. Huang et al., “A 2.4 GHz/915 MHz 51 µW wake-up receiver with offset and noise suppression,” IEEE ISSCC Dig. Tech. Papers, pp. 222-223, Feb. 2010. X. Huang et al., “A 2.4 GHz/915 MHz 51 µW wake-up receiver with offset and noise suppression,” IEEE ISSCC Dig. Tech. Papers, pp. 222-223, Feb. 2010.
8.
go back to reference J. R. Hu and B. P. Otis, “A 3 µW, 400 MHz divide-by-5 injection-locked frequency divider with 56 % lock range in 90 nm CMOS,” IEEE RFICS, pp. 665-668, Jun. 2008. J. R. Hu and B. P. Otis, “A 3 µW, 400 MHz divide-by-5 injection-locked frequency divider with 56 % lock range in 90 nm CMOS,” IEEE RFICS, pp. 665-668, Jun. 2008.
9.
go back to reference M. van Elzakker et al., “A 10-Bit charge-redistribution ADC consuming 1.9 µW at 1 MS/s,” IEEE JSSC, vol. 45, no. 5, May 2010. M. van Elzakker et al., “A 10-Bit charge-redistribution ADC consuming 1.9 µW at 1 MS/s,” IEEE JSSC, vol. 45, no. 5, May 2010.
10.
go back to reference P. Harpe et al., “A 30fJ/conversion-step 8b 0-to-10MS/s asynchronous SAR ADC in 90 nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 388-389, Feb. 2010. P. Harpe et al., “A 30fJ/conversion-step 8b 0-to-10MS/s asynchronous SAR ADC in 90 nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 388-389, Feb. 2010.
11.
go back to reference V. Giannini et al., “An 820 µW 9b 40MS/s noise-tolerant dynamic-SAR ADC in 90 nm digital CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 238-239, Feb. 2008. V. Giannini et al., “An 820 µW 9b 40MS/s noise-tolerant dynamic-SAR ADC in 90 nm digital CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 238-239, Feb. 2008.
12.
go back to reference Q. Fan, J. H. Huijsing and K. A. A. Makinwa, “A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2 μV offset,” JSSC, vol. 47, no. 2, pp. 464-475, Feb. 2012. Q. Fan, J. H. Huijsing and K. A. A. Makinwa, “A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2 μV offset,” JSSC, vol. 47, no. 2, pp. 464-475, Feb. 2012.
13.
go back to reference M. Pertijs and W. J. Kindt, “A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping,” IEEE ISSCC Dig. Tech. Papers, pp. 324-325, Feb. 2009. M. Pertijs and W. J. Kindt, “A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping,” IEEE ISSCC Dig. Tech. Papers, pp. 324-325, Feb. 2009.
14.
go back to reference J. F. Witte, J. H. Huijsing and K. A. A. Makinwa, “A chopper and auto-zero offset-stabilized CMOS instrumentation amplifier,” VLIS Circuits, pp. 210-211, Jun. 2009. J. F. Witte, J. H. Huijsing and K. A. A. Makinwa, “A chopper and auto-zero offset-stabilized CMOS instrumentation amplifier,” VLIS Circuits, pp. 210-211, Jun. 2009.
15.
go back to reference R. Wu, K. A. A. Makinwa and J. H. Huijsing, “A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06 % untrimmed gain error,” IEEE JSSC, vol. 46, no. 12, pp. 2794-2806, Dec. 2011. R. Wu, K. A. A. Makinwa and J. H. Huijsing, “A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06 % untrimmed gain error,” IEEE JSSC, vol. 46, no. 12, pp. 2794-2806, Dec. 2011.
16.
go back to reference R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE JSSC, vol. 38, no. 6, pp. 958-965, Jun. 2003. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE JSSC, vol. 38, no. 6, pp. 958-965, Jun. 2003.
17.
go back to reference N. Verma et al., “A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system,” IEEE JSSC, vol. 45, no. 4, Apr. 2010. N. Verma et al., “A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system,” IEEE JSSC, vol. 45, no. 4, Apr. 2010.
18.
go back to reference J. Xu, R. F. Yazicioglu, B. Grundlehner, P. Harpe and K. A. A. Makinwa, “A 160 µW 8-Channel Active Electrode System for EEG Monitoring,” IEEE Trans. Biomedical circuits and systems, vol.5, no.6, Dec. 2011. J. Xu, R. F. Yazicioglu, B. Grundlehner, P. Harpe and K. A. A. Makinwa, “A 160 µW 8-Channel Active Electrode System for EEG Monitoring,” IEEE Trans. Biomedical circuits and systems, vol.5, no.6, Dec. 2011.
19.
go back to reference R. F. Yazicioglu et al., “A 30µ W analog signal processor ASIC for portable biopotential signal monitoring,” IEEE JSSC, vol. 46, no. 1, pp. 209-223, Jan. 2011. R. F. Yazicioglu et al., “A 30µ W analog signal processor ASIC for portable biopotential signal monitoring,” IEEE JSSC, vol. 46, no. 1, pp. 209-223, Jan. 2011.
20.
go back to reference D. Yeager et al., “A 9µA, addressable gen2 sensor tag for biosignal acquisition,” IEEE JSSC, vol. 45, no. 10, pp. 2198-2209, Oct. 2010. D. Yeager et al., “A 9µA, addressable gen2 sensor tag for biosignal acquisition,” IEEE JSSC, vol. 45, no. 10, pp. 2198-2209, Oct. 2010.
21.
go back to reference C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996. C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
22.
go back to reference K. Nagaraj, “A parasitic-insensitive area-efficient approach to realizing very large time constants in switched-capacitor circuits,” IEEE Trans. Circuits and Systems, vol. 36, no. 9, Sept. 1989. K. Nagaraj, “A parasitic-insensitive area-efficient approach to realizing very large time constants in switched-capacitor circuits,” IEEE Trans. Circuits and Systems, vol. 36, no. 9, Sept. 1989.
23.
go back to reference R. Wu, K. A. A. Makinwa, J. H. Huijsing, “A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple-reduction loop,” IEEE JSSC, vol. 44, no. 12, pp. 3232-3243, Dec. 2009. R. Wu, K. A. A. Makinwa, J. H. Huijsing, “A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple-reduction loop,” IEEE JSSC, vol. 44, no. 12, pp. 3232-3243, Dec. 2009.
24.
go back to reference J. H. Huijsing, Operational Amplifiers: Theory and Design. New York, Springer, 2011. J. H. Huijsing, Operational Amplifiers: Theory and Design. New York, Springer, 2011.
25.
go back to reference J. Xu, Q. Fan, J. H. Huijsing, C. Van Hoof, R. F. Yazicioglu, K. A. A. Makinwa, “Measurement and Analysis of Current Noise in Chopper Amplifiers,” IEEE JSSC, vol. 48, No. 7, July 2013. J. Xu, Q. Fan, J. H. Huijsing, C. Van Hoof, R. F. Yazicioglu, K. A. A. Makinwa, “Measurement and Analysis of Current Noise in Chopper Amplifiers,” IEEE JSSC, vol. 48, No. 7, July 2013.
Metadata
Title
Capacitively Coupled Chopper Instrumentation Amplifiers for Low-Voltage Applications
Authors
Qinwen Fan
Kofi A. A. Makinwa
Johan H. Huijsing
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-47391-8_7