Skip to main content
Top
Published in:
Cover of the book

2011 | OriginalPaper | Chapter

1. Capillary Instability of Free Liquid Jets

Authors : N. Ashgriz, A. L. Yarin

Published in: Handbook of Atomization and Sprays

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter deals with capillary instability of straight free liquid jets moving in air. It begins with linear stability theory for small perturbations of Newtonian liquid jets and discusses the unstable modes, characteristic growth rates, temporal and spatial instabilities and their underlying physical mechanisms. The linear theory also provides an estimate of the main droplet size emerging from capillary breakup. Formation of satellite modes is treated in the framework of either asymptotic methods or direct numerical simulations. Then, such additional effects like thermocapillarity, or swirl are taken into account. In addition, quasi-one-dimensional approach for description of capillary breakup is introduced and illustrated in detail for Newtonian and rheologically complex liquid jets (pseudoplastic, dilatant, and viscoelastic polymeric liquids).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bidone, G. Experiences sur la forme et sur la direction des veines et des courants d’eau lances par diverses ouvertures. Imprimerie Royale, Turin, pp. 1–136 (1829). Bidone, G. Experiences sur la forme et sur la direction des veines et des courants d’eau lances par diverses ouvertures. Imprimerie Royale, Turin, pp. 1–136 (1829).
2.
go back to reference Savart, F. Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi. Ann. Chim. Phys. 53, 337–386 (1833). Savart, F. Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi. Ann. Chim. Phys. 53, 337–386 (1833).
3.
go back to reference Plateau, J. Statique experimentale et theorique des liquids soumis aux seules forces moleculaires. Cited by Lord Rayleigh, Theory of Sound, Vol. II, p. 363, 1945. New York: Dover (1873). Plateau, J. Statique experimentale et theorique des liquids soumis aux seules forces moleculaires. Cited by Lord Rayleigh, Theory of Sound, Vol. II, p. 363, 1945. New York: Dover (1873).
4.
go back to reference Rayleigh, W.S. On the instability of jets. Proc. London Math. Soc. 10, 4–13 (1879).CrossRef Rayleigh, W.S. On the instability of jets. Proc. London Math. Soc. 10, 4–13 (1879).CrossRef
5.
go back to reference Rayleigh, W. S. On the instability of jets. Proc. London Math. Soc. 4, 10 (1878). Rayleigh, W. S. On the instability of jets. Proc. London Math. Soc. 4, 10 (1878).
6.
go back to reference Rayleigh, W.S. Further observations upon liquid jets. Proc. London Math. Soc. 34, 130–145 (1882).CrossRef Rayleigh, W.S. Further observations upon liquid jets. Proc. London Math. Soc. 34, 130–145 (1882).CrossRef
7.
go back to reference Rayleigh, W.S. Theory of Sound, 2nd edn, Vol. 2. London: Macmillan (1896). Reprinted in 1945, New York: Dover, 504 pp.MATH Rayleigh, W.S. Theory of Sound, 2nd edn, Vol. 2. London: Macmillan (1896). Reprinted in 1945, New York: Dover, 504 pp.MATH
8.
go back to reference Magnus, G. Hydraulische Untersuchungen. Anne. Phys. Chem. 95, 1–59 (1855).CrossRef Magnus, G. Hydraulische Untersuchungen. Anne. Phys. Chem. 95, 1–59 (1855).CrossRef
9.
go back to reference Boussinesq. J. Mem. Acad. Sci. Paris 23, 639 (1877). Boussinesq. J. Mem. Acad. Sci. Paris 23, 639 (1877).
10.
go back to reference Weber, C. On the breakdown of a fluid jet, Zum Zerfall eines Flussigkeitsstrahles. Z. Angew. Math. und Mech. 11, 136–154 (1931).MATHCrossRef Weber, C. On the breakdown of a fluid jet, Zum Zerfall eines Flussigkeitsstrahles. Z. Angew. Math. und Mech. 11, 136–154 (1931).MATHCrossRef
11.
12.
13.
go back to reference Keller, J. B., Rubinow, S. I., & Tu, Y. O. Spatial instability of a jet. Phys. Fluids 16, 2052–2055 (1973).CrossRef Keller, J. B., Rubinow, S. I., & Tu, Y. O. Spatial instability of a jet. Phys. Fluids 16, 2052–2055 (1973).CrossRef
14.
go back to reference Bogy, D. B. Drop formation in a circular liquid jet. Annu. Rev. Fluid Mech. 11, 207–228 (1979).CrossRef Bogy, D. B. Drop formation in a circular liquid jet. Annu. Rev. Fluid Mech. 11, 207–228 (1979).CrossRef
15.
go back to reference Leib, S. J. & Goldstein, M. E. The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479–500 (1986).MATHCrossRef Leib, S. J. & Goldstein, M. E. The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479–500 (1986).MATHCrossRef
16.
go back to reference Haenlein, A. Disintegration of a liquid jet. NACA-TM-659 (1931). Haenlein, A. Disintegration of a liquid jet. NACA-TM-659 (1931).
17.
go back to reference Donnelly, R. J. & Glaberson. W. Experiments on the capillary instability of a jet. Proc. R. Soc. Lond. A 209. 547–556 (1966). Donnelly, R. J. & Glaberson. W. Experiments on the capillary instability of a jet. Proc. R. Soc. Lond. A 209. 547–556 (1966).
18.
go back to reference Goedde, E. F. & Yuen, M. C. Experiments on liquid jet instability. J. Fluid Mech. 40, 495–511 (1970).CrossRef Goedde, E. F. & Yuen, M. C. Experiments on liquid jet instability. J. Fluid Mech. 40, 495–511 (1970).CrossRef
19.
go back to reference McCarthy, M. J. & Molloy, N. A. Review of’ stability of liquid jets and the influence of nozzle design. Chem. Eng. J. 7, 1–20 (1974). McCarthy, M. J. & Molloy, N. A. Review of’ stability of liquid jets and the influence of nozzle design. Chem. Eng. J. 7, 1–20 (1974).
20.
go back to reference Sirignano, W. A. & Mehring, C. Review of theory of distortion and disintegration of liquid streams. Prog. Energy Combust. Sci. 26. 609–655 (2000).CrossRef Sirignano, W. A. & Mehring, C. Review of theory of distortion and disintegration of liquid streams. Prog. Energy Combust. Sci. 26. 609–655 (2000).CrossRef
21.
go back to reference Vassallo, P. & Ashgriz, N. Satellite formation and merging in liquid jet breakup. Proc. R. Soc. Lond. A 433, 269–286 (1991).MATHCrossRef Vassallo, P. & Ashgriz, N. Satellite formation and merging in liquid jet breakup. Proc. R. Soc. Lond. A 433, 269–286 (1991).MATHCrossRef
22.
go back to reference Grant, R. P. & Middleman, S. Newtonian jet stability. AIChE J. 12, 669–678 (1966).CrossRef Grant, R. P. & Middleman, S. Newtonian jet stability. AIChE J. 12, 669–678 (1966).CrossRef
23.
go back to reference Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability. Oxford: Claredon (1961).MATH Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability. Oxford: Claredon (1961).MATH
24.
go back to reference Sterling, A. M. & Sleicher, C. A. The instability of capillary jets. J. Fluid Mech. 68(3), 477–495 (1975).MATHCrossRef Sterling, A. M. & Sleicher, C. A. The instability of capillary jets. J. Fluid Mech. 68(3), 477–495 (1975).MATHCrossRef
25.
go back to reference Reitz, R. D. & Bracco, F. V. Mechanism of atomization of a liquid jet. Phys. Fluids 25(10), 1730–1742 (1982).MATHCrossRef Reitz, R. D. & Bracco, F. V. Mechanism of atomization of a liquid jet. Phys. Fluids 25(10), 1730–1742 (1982).MATHCrossRef
26.
go back to reference Yoon, S. S. & Heister, S. D. Categorizing linear theories for atomizing round jets, Atomization and Sprays (SCI), 13(5&6), pp. 499–516 (2003).CrossRef Yoon, S. S. & Heister, S. D. Categorizing linear theories for atomizing round jets, Atomization and Sprays (SCI), 13(5&6), pp. 499–516 (2003).CrossRef
27.
go back to reference Batchelor, G. K. An Introduction to Fluid Dynamics. New York: Cambridge University Press (1999), pp. 511–517, 521–526. Batchelor, G. K. An Introduction to Fluid Dynamics. New York: Cambridge University Press (1999), pp. 511–517, 521–526.
28.
go back to reference Gordillo, J. M., Perez-Saborid, M., & Ganan-Calvo, A. M. Linear stability of co-flowing liquid–gas jets. J. Fluid Mech. 448, 23–51 (2001).MathSciNetMATHCrossRef Gordillo, J. M., Perez-Saborid, M., & Ganan-Calvo, A. M. Linear stability of co-flowing liquid–gas jets. J. Fluid Mech. 448, 23–51 (2001).MathSciNetMATHCrossRef
29.
go back to reference Yarin, A. L. Free Liquid Jets and Films: Hydrodynamics and Rheology. Harlow/New York: Longman/Wiley (1993).MATH Yarin, A. L. Free Liquid Jets and Films: Hydrodynamics and Rheology. Harlow/New York: Longman/Wiley (1993).MATH
30.
31.
go back to reference Kase, S. & Matsuo, T. Studies on melt spinning. I. Fundamental equations on the dynamics of melt spinning. J. Polym. Sci., Pt. A 3, 2541–2554 (1965). Kase, S. & Matsuo, T. Studies on melt spinning. I. Fundamental equations on the dynamics of melt spinning. J. Polym. Sci., Pt. A 3, 2541–2554 (1965).
32.
go back to reference Matovich, M. A. & Pearson, J. R. A. Spinning a molten threadline. Steady-state viscous flows. Ind. Eng. Chem. Fundam. 8, 512–520 (1969).CrossRef Matovich, M. A. & Pearson, J. R. A. Spinning a molten threadline. Steady-state viscous flows. Ind. Eng. Chem. Fundam. 8, 512–520 (1969).CrossRef
33.
go back to reference Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997).CrossRef Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997).CrossRef
34.
go back to reference Eggers, J. & Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 71, 036601 (2008).CrossRef Eggers, J. & Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 71, 036601 (2008).CrossRef
35.
go back to reference Bechtel, S. E., Cao, J. Z., & Forest, M. G. Practical application of a higher-order perturbation-theory for slender viscoelastic jets and fibers. J. Non-Newton. Fluid Mech. 41, 201–273 (1992).MATHCrossRef Bechtel, S. E., Cao, J. Z., & Forest, M. G. Practical application of a higher-order perturbation-theory for slender viscoelastic jets and fibers. J. Non-Newton. Fluid Mech. 41, 201–273 (1992).MATHCrossRef
36.
go back to reference Pimbley, W. T. Drop formation from a liquid jet: A linear one-dimensional analysis considered as boundary value problem. IBM J. Res. Dev. 20, 148–156 (1976).MATHCrossRef Pimbley, W. T. Drop formation from a liquid jet: A linear one-dimensional analysis considered as boundary value problem. IBM J. Res. Dev. 20, 148–156 (1976).MATHCrossRef
37.
38.
go back to reference Green, A. E. On the nonlinear behavior of fluid jets. Int. J. Eng. Sci. 14, 49–63 (1976).MATHCrossRef Green, A. E. On the nonlinear behavior of fluid jets. Int. J. Eng. Sci. 14, 49–63 (1976).MATHCrossRef
39.
go back to reference Naghdi, P. M. On the applicability of directed fluid jets to Newtonian and non-Newtonian flows. J. Non-Newton. Fluid Mech. 5, 233–265 (1979).MATHCrossRef Naghdi, P. M. On the applicability of directed fluid jets to Newtonian and non-Newtonian flows. J. Non-Newton. Fluid Mech. 5, 233–265 (1979).MATHCrossRef
40.
go back to reference Caulk, D. A. & Naghdi, P. M. The influence of twist on the motion of straight elliptical jets. Arch. Ration. Mech. Anal. 69, 1–30 (1979).MathSciNetMATHCrossRef Caulk, D. A. & Naghdi, P. M. The influence of twist on the motion of straight elliptical jets. Arch. Ration. Mech. Anal. 69, 1–30 (1979).MathSciNetMATHCrossRef
41.
go back to reference Bogy, D. B. Use of one-dimensional Cosserat theory to study instability of a viscous liquid jet. Phys. Fluids 21, 190–197 (1978).MathSciNetMATHCrossRef Bogy, D. B. Use of one-dimensional Cosserat theory to study instability of a viscous liquid jet. Phys. Fluids 21, 190–197 (1978).MathSciNetMATHCrossRef
42.
go back to reference Lopez-Herrera, J. M., Ganan-Calvo, A. M., & Perez-Saboird, M. One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to EHD spraying. J. Aerosol Sci. 30, 895–912 (1999).CrossRef Lopez-Herrera, J. M., Ganan-Calvo, A. M., & Perez-Saboird, M. One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to EHD spraying. J. Aerosol Sci. 30, 895–912 (1999).CrossRef
43.
go back to reference Barrero, A. & Loscertales, I. G. Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89–106 (2007).CrossRef Barrero, A. & Loscertales, I. G. Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89–106 (2007).CrossRef
44.
45.
go back to reference Leib, S. J. & Goldstein, M. E. Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29, 952–954 (1986).CrossRef Leib, S. J. & Goldstein, M. E. Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29, 952–954 (1986).CrossRef
46.
go back to reference Lin, P. S. & Kang, D. J. Atomization of a liquid jet. Phys. Fluids 30, 2000–2006 (1987).CrossRef Lin, P. S. & Kang, D. J. Atomization of a liquid jet. Phys. Fluids 30, 2000–2006 (1987).CrossRef
47.
go back to reference Lin, S. P. & Lian, Z. W. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. Phys. Fluids. A 5, 771–773 (1993).CrossRef Lin, S. P. & Lian, Z. W. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. Phys. Fluids. A 5, 771–773 (1993).CrossRef
48.
go back to reference Zhou, Z. W. & Lin, S. P. Effects of compressibility on the atomization of liquid jets. J. Propul. Power 8, 736–740 (1992).CrossRef Zhou, Z. W. & Lin, S. P. Effects of compressibility on the atomization of liquid jets. J. Propul. Power 8, 736–740 (1992).CrossRef
49.
go back to reference Lin, S. P. Regimes of jet breakup and breakup mechanisms (mathematical aspects). In Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, Vol. 1, ed. K.K. Kuo. Reston: AIAA Inc. (1996), pp. 137–160. Lin, S. P. Regimes of jet breakup and breakup mechanisms (mathematical aspects). In Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, Vol. 1, ed. K.K. Kuo. Reston: AIAA Inc. (1996), pp. 137–160.
50.
go back to reference Lin, S. P. & Lian, Z. W. Absolute instability of a liquid jet in a gas. Phys. Fluids A 1(3), 490–493 (1980).CrossRef Lin, S. P. & Lian, Z. W. Absolute instability of a liquid jet in a gas. Phys. Fluids A 1(3), 490–493 (1980).CrossRef
51.
go back to reference Lin, S. P. & Chen, J. N. Roles played by the interfacial shears in the instability mechanism of a viscous liquid jet surrounded by a viscous gas in a pipe. J. Fluid Mech. 376, 37–51 (1998).MATHCrossRef Lin, S. P. & Chen, J. N. Roles played by the interfacial shears in the instability mechanism of a viscous liquid jet surrounded by a viscous gas in a pipe. J. Fluid Mech. 376, 37–51 (1998).MATHCrossRef
52.
go back to reference Vihinen, I., Honohan, A., & Lin, S. P. Absolute and convective instability of a viscous jet in microgravity. Phys. Fluids 9, 3117–3119 (1997).MathSciNetMATHCrossRef Vihinen, I., Honohan, A., & Lin, S. P. Absolute and convective instability of a viscous jet in microgravity. Phys. Fluids 9, 3117–3119 (1997).MathSciNetMATHCrossRef
53.
go back to reference O’Donnel, B., Chen, J. N., & Lin, S. P. Transition from convective to absolute instability in a liquid jet. Phys. Fluids 13, 2732–2734 (2001).CrossRef O’Donnel, B., Chen, J. N., & Lin, S. P. Transition from convective to absolute instability in a liquid jet. Phys. Fluids 13, 2732–2734 (2001).CrossRef
54.
55.
56.
go back to reference Gaster, M. Growth of disturbances in both space and time. J. Fluid Mech. 11, 723–727 (1968). Gaster, M. Growth of disturbances in both space and time. J. Fluid Mech. 11, 723–727 (1968).
57.
go back to reference Lin, S. P. & Woods, D. R. Tailored liquid jets. Atom. Sprays 18, 363–374 (2008).CrossRef Lin, S. P. & Woods, D. R. Tailored liquid jets. Atom. Sprays 18, 363–374 (2008).CrossRef
58.
go back to reference Chinn, J. J. An appraisal of swirl atomizer inviscid internal flow analysis, Part 2, Inviscid spray cone angle and comparison of inviscid method with experimental results for discharge coefficient, air core radius, and spray angle. Atom. Sprays 19, 283–308 (2009).CrossRef Chinn, J. J. An appraisal of swirl atomizer inviscid internal flow analysis, Part 2, Inviscid spray cone angle and comparison of inviscid method with experimental results for discharge coefficient, air core radius, and spray angle. Atom. Sprays 19, 283–308 (2009).CrossRef
59.
go back to reference Craig, L., Barlow, N., Partel, S., Kanya, B., & Lin, S. P. Optimal and non optimal flows in a swirl atomizer. J. Int. Inst. Liquid Atom. Spray Syst. 13, 113–1124 (2009). Craig, L., Barlow, N., Partel, S., Kanya, B., & Lin, S. P. Optimal and non optimal flows in a swirl atomizer. J. Int. Inst. Liquid Atom. Spray Syst. 13, 113–1124 (2009).
60.
go back to reference Lafrance, P. & Ritter, R. C. Capillary breakup of a liquid jet with a random initial perturbation. Trans ASME: J. Appl. Mech. 44, 385–388 (1977).CrossRef Lafrance, P. & Ritter, R. C. Capillary breakup of a liquid jet with a random initial perturbation. Trans ASME: J. Appl. Mech. 44, 385–388 (1977).CrossRef
61.
go back to reference Pimbley, W. T. & Lee, H.C. Satellite droplet formation in a liquid jet. IBM J. Res. Dev. 21, 21–30 (1977).CrossRef Pimbley, W. T. & Lee, H.C. Satellite droplet formation in a liquid jet. IBM J. Res. Dev. 21, 21–30 (1977).CrossRef
62.
go back to reference Scarlett, B. & Parkin, C. S. Droplet production on controlled jet breakup. Chem. Eng. J. 13, 127–141 (1977).CrossRef Scarlett, B. & Parkin, C. S. Droplet production on controlled jet breakup. Chem. Eng. J. 13, 127–141 (1977).CrossRef
63.
go back to reference Yuen, M. C. Non-linear capillary instability of a liquid jet. J. Fluid Mech. 33, 151–163 (1968).MATHCrossRef Yuen, M. C. Non-linear capillary instability of a liquid jet. J. Fluid Mech. 33, 151–163 (1968).MATHCrossRef
64.
go back to reference Kakutani, T., Inoue, Y., & Kan, T. Nonlinear capillary waves on the surface of liquid column. J. Phys. Soc. Jpn. 37, 529–538 (1974).CrossRef Kakutani, T., Inoue, Y., & Kan, T. Nonlinear capillary waves on the surface of liquid column. J. Phys. Soc. Jpn. 37, 529–538 (1974).CrossRef
65.
go back to reference Lafrance, P. Nonlinear breakup of a liquid jet. Phys. Fluids 17, 1913–1914 (1974).CrossRef Lafrance, P. Nonlinear breakup of a liquid jet. Phys. Fluids 17, 1913–1914 (1974).CrossRef
66.
67.
go back to reference Bogy, D. B. Break-up of a liquid jet: second perturbation solution for one-dimensional Cosserat theory. IBM J. Res. Dev. 23, 87–92 (1979).MATHCrossRef Bogy, D. B. Break-up of a liquid jet: second perturbation solution for one-dimensional Cosserat theory. IBM J. Res. Dev. 23, 87–92 (1979).MATHCrossRef
68.
go back to reference Bogy, D. B. Break-up of a liquid jet: Third perturbation Cosserat solution. Phys. Fluids 22, 224–230 (1979).MATHCrossRef Bogy, D. B. Break-up of a liquid jet: Third perturbation Cosserat solution. Phys. Fluids 22, 224–230 (1979).MATHCrossRef
69.
go back to reference Bogy, D. B. Wave propagation and instability in a circular semi-infinite liquid jet harmonically forced at the nozzle. Trans ASME: J. Appl. Mech. 45, 469–474 (1978).MATHCrossRef Bogy, D. B. Wave propagation and instability in a circular semi-infinite liquid jet harmonically forced at the nozzle. Trans ASME: J. Appl. Mech. 45, 469–474 (1978).MATHCrossRef
70.
go back to reference Taub, H. H. Investigation of nonlinear waves on liquid jets. Phys. Fluids 19, 1124–1129 (1976).CrossRef Taub, H. H. Investigation of nonlinear waves on liquid jets. Phys. Fluids 19, 1124–1129 (1976).CrossRef
71.
go back to reference Chaudhary, K. C. & Redekopp, L. G. The nonlinear capillary instability of a liquid jet. Part 1. Theory. J. Fluid Mech. 96, 257–274 (1980).MATHCrossRef Chaudhary, K. C. & Redekopp, L. G. The nonlinear capillary instability of a liquid jet. Part 1. Theory. J. Fluid Mech. 96, 257–274 (1980).MATHCrossRef
72.
go back to reference Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behavior before droplet formation. J. Fluid Mech. 96, 275–286 (1980).MATHCrossRef Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behavior before droplet formation. J. Fluid Mech. 96, 275–286 (1980).MATHCrossRef
73.
go back to reference Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 3. Experiments on satellite drop formation and control. J. Fluid Mech. 96, 287–298 (1980).MATHCrossRef Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 3. Experiments on satellite drop formation and control. J. Fluid Mech. 96, 287–298 (1980).MATHCrossRef
74.
go back to reference Mansour, N. N. & Lundgren, T. S. Satellite formation in capillary jet breakup. Phys. Fluids A 2, 1141–1144 (1990).CrossRef Mansour, N. N. & Lundgren, T. S. Satellite formation in capillary jet breakup. Phys. Fluids A 2, 1141–1144 (1990).CrossRef
75.
go back to reference Ashgriz, N. & Mashayek, F. Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163–190 (1995).MATHCrossRef Ashgriz, N. & Mashayek, F. Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163–190 (1995).MATHCrossRef
76.
go back to reference Ambravaneswaran, B., Phillips, S. D., & Basaran, O. A. Theoretical analysis of dripping faucet. Phys. Rev. Lett. 85, 5332–5335 (2000).CrossRef Ambravaneswaran, B., Phillips, S. D., & Basaran, O. A. Theoretical analysis of dripping faucet. Phys. Rev. Lett. 85, 5332–5335 (2000).CrossRef
77.
go back to reference Basaran, O. A. & Suryo, R. The invisible jet. Nat. Phys. 3, 679–680 (2007).CrossRef Basaran, O. A. & Suryo, R. The invisible jet. Nat. Phys. 3, 679–680 (2007).CrossRef
78.
go back to reference Bogy, D. B., Shine, S. J., & Talke, F. E. Finite difference solution of the Cosserat fluid jet equations. J. Comput. Phys. 38, 294–326 (1980).MATHCrossRef Bogy, D. B., Shine, S. J., & Talke, F. E. Finite difference solution of the Cosserat fluid jet equations. J. Comput. Phys. 38, 294–326 (1980).MATHCrossRef
79.
go back to reference Eggers, J. Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 72, 3458–3460 (1993).CrossRef Eggers, J. Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 72, 3458–3460 (1993).CrossRef
80.
go back to reference Brenner, M. P., Shi, X. D., & Nagel, S.R. Iterated instabilities during droplet fission. Phys. Rev. Lett. 73, 3391–3394 (1994).CrossRef Brenner, M. P., Shi, X. D., & Nagel, S.R. Iterated instabilities during droplet fission. Phys. Rev. Lett. 73, 3391–3394 (1994).CrossRef
83.
go back to reference Brenner, M. P., Lister, J., & Stone, H. A. Pinching threads, singularities and the number 0.0304. Phys. Fluids 8, 2827–2836 (1996).MathSciNetMATHCrossRef Brenner, M. P., Lister, J., & Stone, H. A. Pinching threads, singularities and the number 0.0304. Phys. Fluids 8, 2827–2836 (1996).MathSciNetMATHCrossRef
84.
go back to reference Brenner, M. P., Eggers, J., Joseph, K., Nagel, S. R., & Shi, X. D. Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids 9, 1573–1590 (1997).CrossRef Brenner, M. P., Eggers, J., Joseph, K., Nagel, S. R., & Shi, X. D. Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids 9, 1573–1590 (1997).CrossRef
85.
go back to reference Cline, H. E. & Anthony, T. R. The effects of harmonics on the capillary instability of liquid jets. J. Appl. Phys. 49 (6), 3203–3208 (1978).CrossRef Cline, H. E. & Anthony, T. R. The effects of harmonics on the capillary instability of liquid jets. J. Appl. Phys. 49 (6), 3203–3208 (1978).CrossRef
86.
go back to reference Rutland, D. F. & Jameson, G. J. Theoretical prediction of the sizes of drops formed in the breakup of capillary jets. Chem. Eng. Sci. 25(11-E), 1689–1698 (1970). Rutland, D. F. & Jameson, G. J. Theoretical prediction of the sizes of drops formed in the breakup of capillary jets. Chem. Eng. Sci. 25(11-E), 1689–1698 (1970).
87.
go back to reference Hibling, J. & Heister, S. D. Droplet size control in liquid jet breakup. Phys. Fluids 8(6), 1574–1581 (1996).CrossRef Hibling, J. & Heister, S. D. Droplet size control in liquid jet breakup. Phys. Fluids 8(6), 1574–1581 (1996).CrossRef
88.
go back to reference Orme, M. & Muntz, E. P. The manipulation of capillary stream breakup using amplitude-modulated disturbances: A pictorial and quantitative representation. Phys. Fluids A 2(7), 1124–1140 (1990).CrossRef Orme, M. & Muntz, E. P. The manipulation of capillary stream breakup using amplitude-modulated disturbances: A pictorial and quantitative representation. Phys. Fluids A 2(7), 1124–1140 (1990).CrossRef
89.
go back to reference Orme, M., Willis, K., & Nguyen, T.-V. Droplet patterns from capillary stream breakup. Phys. Fluids A 5(1), 80–90 (1993).CrossRef Orme, M., Willis, K., & Nguyen, T.-V. Droplet patterns from capillary stream breakup. Phys. Fluids A 5(1), 80–90 (1993).CrossRef
90.
go back to reference Bousfield, D. W., Keunings, R., Marrucci, G., & Denn, M. M. Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J. Non-Newtonian Fluid Mech. 21, 79–97 (1986).CrossRef Bousfield, D. W., Keunings, R., Marrucci, G., & Denn, M. M. Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J. Non-Newtonian Fluid Mech. 21, 79–97 (1986).CrossRef
91.
go back to reference Bousfield, D., Stockel, I. H., & Nanivadekar, C. K. The breakup of viscous jets with large velocity modulations. J. Fluid Mech. 218, 601–617 (1990).CrossRef Bousfield, D., Stockel, I. H., & Nanivadekar, C. K. The breakup of viscous jets with large velocity modulations. J. Fluid Mech. 218, 601–617 (1990).CrossRef
92.
go back to reference Huynh, H., Ashgriz, N., & Mashayek, F. Instability of a liquid jet subject to disturbances composed of two wave numbers. J. Fluid Mech. 320, 185–210 (1996).MATHCrossRef Huynh, H., Ashgriz, N., & Mashayek, F. Instability of a liquid jet subject to disturbances composed of two wave numbers. J. Fluid Mech. 320, 185–210 (1996).MATHCrossRef
93.
go back to reference Spangler, C. A., Hibling, J. H., & Heister, S. D. Nonlinear modeling of jet atomization in the wind-induced regime. Phys. Fluids 7 (5), 964–971 (1995).MATHCrossRef Spangler, C. A., Hibling, J. H., & Heister, S. D. Nonlinear modeling of jet atomization in the wind-induced regime. Phys. Fluids 7 (5), 964–971 (1995).MATHCrossRef
94.
go back to reference Tjahjadi, M., Stone, H.A., & Ottino, J.M., Satellite and subsatellite formation in capillary breakup. J. Fluid Mech. 243, 297–317 (1992).CrossRef Tjahjadi, M., Stone, H.A., & Ottino, J.M., Satellite and subsatellite formation in capillary breakup. J. Fluid Mech. 243, 297–317 (1992).CrossRef
95.
go back to reference Bauer, H. F. Free liquid surface response induced by fluctuations of thermal Marangoni convection. AIAA J. 22, 421–428 (1983).CrossRef Bauer, H. F. Free liquid surface response induced by fluctuations of thermal Marangoni convection. AIAA J. 22, 421–428 (1983).CrossRef
97.
go back to reference Dijkstra, H. A. & Steen, P. H. Thermocapillary stabilization of the capillary breakup of an annular film of liquid. J. Fluid Mech. 229, 205–228 (1991).MathSciNetMATHCrossRef Dijkstra, H. A. & Steen, P. H. Thermocapillary stabilization of the capillary breakup of an annular film of liquid. J. Fluid Mech. 229, 205–228 (1991).MathSciNetMATHCrossRef
98.
go back to reference Mashayek, F. & Ashgriz, N. Nonlinear instability of liquid jets with thermocapillarity. J. Fluid Mech. 283, 97–123 (1995).MATHCrossRef Mashayek, F. & Ashgriz, N. Nonlinear instability of liquid jets with thermocapillarity. J. Fluid Mech. 283, 97–123 (1995).MATHCrossRef
99.
go back to reference Ostrach, S. Low-gravity fluid flows. Ann. Rev. Fluid Mech. 14, 13–345 (1982).CrossRef Ostrach, S. Low-gravity fluid flows. Ann. Rev. Fluid Mech. 14, 13–345 (1982).CrossRef
100.
101.
go back to reference Faidley, R. W. & Panton, R. L. Measurement of liquid jet instability induced by surface tension variations. Exp. Therm. Fluid Sci. 3, 383–387 (1990).CrossRef Faidley, R. W. & Panton, R. L. Measurement of liquid jet instability induced by surface tension variations. Exp. Therm. Fluid Sci. 3, 383–387 (1990).CrossRef
102.
go back to reference Nahas, N. M. & Panton, R. L. Control of surface tension flows-Instability of a liquid jet. J. Fluids Eng. Trans. ASME 112, 3, 296–301 (1990).CrossRef Nahas, N. M. & Panton, R. L. Control of surface tension flows-Instability of a liquid jet. J. Fluids Eng. Trans. ASME 112, 3, 296–301 (1990).CrossRef
103.
go back to reference Fulnari, E. P. Temporal instability of viscous liquid microjets with spatially varying surface tension. J. Phys. A: Math. Gen. 38, 263–276 (2005).CrossRef Fulnari, E. P. Temporal instability of viscous liquid microjets with spatially varying surface tension. J. Phys. A: Math. Gen. 38, 263–276 (2005).CrossRef
104.
go back to reference Saroka, M., Guo, Y., & Ashgriz, N. Nonlinear instability of an evaporating capillary jet. AIAA J. 39(9), 1728–1734 (September 2001).CrossRef Saroka, M., Guo, Y., & Ashgriz, N. Nonlinear instability of an evaporating capillary jet. AIAA J. 39(9), 1728–1734 (September 2001).CrossRef
106.
107.
go back to reference Entov, V. M., Kordonskii, V. I., Kuz’min, V. A., Shul’man, Z. P., & Yarin, A. L. Investigation of the decomposition of jets of rheologically complex liquids. J. Appl. Mech. Tech. Phys. 21, 365–371 (1980).CrossRef Entov, V. M., Kordonskii, V. I., Kuz’min, V. A., Shul’man, Z. P., & Yarin, A. L. Investigation of the decomposition of jets of rheologically complex liquids. J. Appl. Mech. Tech. Phys. 21, 365–371 (1980).CrossRef
108.
go back to reference Yarin, A. L., Zussman, E., Theron, S. A., Rahimi, S., Sobe, Z., & Hasan, D. Elongational behavior of gelled propellant stimulants. J. Rheol. 48, 101–116 (2004).CrossRef Yarin, A. L., Zussman, E., Theron, S. A., Rahimi, S., Sobe, Z., & Hasan, D. Elongational behavior of gelled propellant stimulants. J. Rheol. 48, 101–116 (2004).CrossRef
109.
go back to reference Goldin, M., Pfeffer, R., & Shinnar, R. Break-up of a capillary jet of a non-Newtonian fluid having a yield stress. Chem. Eng. J. 4, 8–20 (1972).CrossRef Goldin, M., Pfeffer, R., & Shinnar, R. Break-up of a capillary jet of a non-Newtonian fluid having a yield stress. Chem. Eng. J. 4, 8–20 (1972).CrossRef
110.
go back to reference Goldin, M., Yerushalmi, J., Pfeffer, R., & Shinnar, R. Breakup of a laminar capillary jet of viscoelastic fluid. J. Fluid Mech. 38, 689–711 (1969).CrossRef Goldin, M., Yerushalmi, J., Pfeffer, R., & Shinnar, R. Breakup of a laminar capillary jet of viscoelastic fluid. J. Fluid Mech. 38, 689–711 (1969).CrossRef
111.
go back to reference Entov, V. M. & Yarin, A. L. Influence of elastic stresses on the capillary breakup of jets of dilute polymer solutions. Fluid Dyn. 19, 21–29 (1984).MATHCrossRef Entov, V. M. & Yarin, A. L. Influence of elastic stresses on the capillary breakup of jets of dilute polymer solutions. Fluid Dyn. 19, 21–29 (1984).MATHCrossRef
112.
go back to reference Rubin, H. & Wharshavsky, M. A note on the breakup of viscoelastic liquid jets. Isr. J. Technol. 8, 285–288 (1970). Rubin, H. & Wharshavsky, M. A note on the breakup of viscoelastic liquid jets. Isr. J. Technol. 8, 285–288 (1970).
113.
go back to reference Gordon, M., Yerushalmi, J., & Shinnar, R. Instability of jets of non-Newtonian fluids. Trans. Soc. Rheol. 17, 303–324 (1973).CrossRef Gordon, M., Yerushalmi, J., & Shinnar, R. Instability of jets of non-Newtonian fluids. Trans. Soc. Rheol. 17, 303–324 (1973).CrossRef
114.
115.
go back to reference Han, T., Yarin, A. L., & Reneker, D. H. Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49, 1651–1658 (2008).CrossRef Han, T., Yarin, A. L., & Reneker, D. H. Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49, 1651–1658 (2008).CrossRef
116.
go back to reference Joseph, D. D. Fluid Dynamics of Viscoelastic Liquids. New York: Springer (1990).MATH Joseph, D. D. Fluid Dynamics of Viscoelastic Liquids. New York: Springer (1990).MATH
117.
go back to reference Entov, V. M. & Kestenboim, Kh. S. Mechanics of fiber formation. Fluid Dyn. 22, 677–686 (1987).MATHCrossRef Entov, V. M. & Kestenboim, Kh. S. Mechanics of fiber formation. Fluid Dyn. 22, 677–686 (1987).MATHCrossRef
118.
go back to reference Reneker, D. H., Yarin, A. L., Zussman, E., & Xu, H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195 (2007).CrossRef Reneker, D. H., Yarin, A. L., Zussman, E., & Xu, H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195 (2007).CrossRef
119.
go back to reference Bazilevsky, A. V., Voronkov, S. I., Entov, V. M., & Rozhkov, A. N. Orientational effects in capillary breakup of jets and threads of dilute polymer solutions. Sov. Phys. Doklady 257, 336–339 (1981) (the English version in Vol. 26). Bazilevsky, A. V., Voronkov, S. I., Entov, V. M., & Rozhkov, A. N. Orientational effects in capillary breakup of jets and threads of dilute polymer solutions. Sov. Phys. Doklady 257, 336–339 (1981) (the English version in Vol. 26).
120.
go back to reference Stelter, M., Brenn, G., Yarin, A. L., Singh, R. P., & Durst, F. Validation and application of a novel elongational device for polymer solutions. J. Rheol. 44, 595–616 (2000).CrossRef Stelter, M., Brenn, G., Yarin, A. L., Singh, R. P., & Durst, F. Validation and application of a novel elongational device for polymer solutions. J. Rheol. 44, 595–616 (2000).CrossRef
121.
go back to reference Schümmer, P. & Tebel, K. H. A new elongational rheometer for polymer solutions. J. Non-Newtonian Fluid Mech. 12, 331–347 (1983).CrossRef Schümmer, P. & Tebel, K. H. A new elongational rheometer for polymer solutions. J. Non-Newtonian Fluid Mech. 12, 331–347 (1983).CrossRef
122.
go back to reference Anna, S. L. & McKinley, G. H. Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol. 45, 115–138 (2001).CrossRef Anna, S. L. & McKinley, G. H. Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol. 45, 115–138 (2001).CrossRef
123.
go back to reference Kroesser, F. W. & Middleman, S. Viscoelastic jet stability. AIChE J. 15, 383–386 (1969).CrossRef Kroesser, F. W. & Middleman, S. Viscoelastic jet stability. AIChE J. 15, 383–386 (1969).CrossRef
124.
go back to reference Rubin, H. Breakup of viscoelastic liquid jets. Isr. J. Technol. 9, 579–581 (1971). Rubin, H. Breakup of viscoelastic liquid jets. Isr. J. Technol. 9, 579–581 (1971).
125.
go back to reference Sagiv, A., Rubin, H., & Takserman-Krozer, R. On the breakup of cylindrical liquid jets. Isr. J. Technol. 11, 349–354 (1973). Sagiv, A., Rubin, H., & Takserman-Krozer, R. On the breakup of cylindrical liquid jets. Isr. J. Technol. 11, 349–354 (1973).
126.
go back to reference Sagiv, A. & Takserman-Krozer, R. Capillary breakup of viscoelastic liquid jet of variable cross-section. Rheol. Acta 14, 420–426 (1975).CrossRef Sagiv, A. & Takserman-Krozer, R. Capillary breakup of viscoelastic liquid jet of variable cross-section. Rheol. Acta 14, 420–426 (1975).CrossRef
127.
128.
go back to reference Lee, W. K., Yu, K. L., & Flumerfelt, R. W. Instability of stationary and uniformly moving cylindrical fluid bodies. Int. J. Multiphase Flow 7, 385–400 (1981).MATHCrossRef Lee, W. K., Yu, K. L., & Flumerfelt, R. W. Instability of stationary and uniformly moving cylindrical fluid bodies. Int. J. Multiphase Flow 7, 385–400 (1981).MATHCrossRef
129.
130.
go back to reference Li, J. & Fontelos, M. A. Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study. Phys. Fluids 15, 922–937 (2003).CrossRef Li, J. & Fontelos, M. A. Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study. Phys. Fluids 15, 922–937 (2003).CrossRef
131.
go back to reference Clasen, C., Eggers, J., Fontelos, M. A., Li, J., & McKinley, G. H. The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283–308 (2006).MATHCrossRef Clasen, C., Eggers, J., Fontelos, M. A., Li, J., & McKinley, G. H. The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283–308 (2006).MATHCrossRef
132.
go back to reference Oliveira, M. S. N. & McKinley, G. H. Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers. Phys. Fluids 17, 071704 (2005).CrossRef Oliveira, M. S. N. & McKinley, G. H. Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers. Phys. Fluids 17, 071704 (2005).CrossRef
133.
go back to reference Renardy, M. Some comments on the surface-tension driven break-up (or lack of it) of viscoelastic jets. J. Non-Newton. Fluid Mech. 51, 97–107 (1994).CrossRef Renardy, M. Some comments on the surface-tension driven break-up (or lack of it) of viscoelastic jets. J. Non-Newton. Fluid Mech. 51, 97–107 (1994).CrossRef
134.
go back to reference Renardy, M. A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets. J. Non-Newton. Fluid Mech. 59, 267–282 (1995).CrossRef Renardy, M. A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets. J. Non-Newton. Fluid Mech. 59, 267–282 (1995).CrossRef
135.
go back to reference Bazilevsky, A. V., Entov, V. M., & Rozhkov, A. N. Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym. Sci. Ser. A 43, 716–726 (2001). Bazilevsky, A. V., Entov, V. M., & Rozhkov, A. N. Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym. Sci. Ser. A 43, 716–726 (2001).
136.
go back to reference Ziabicki, A. Fundamentals of Fibre Formation. London: Wiley (1976). Ziabicki, A. Fundamentals of Fibre Formation. London: Wiley (1976).
137.
go back to reference Ziabicki, A. & Kawai, H. (editors). High-Speed Fiber Spinning. New York: Wiley (1985). Ziabicki, A. & Kawai, H. (editors). High-Speed Fiber Spinning. New York: Wiley (1985).
Metadata
Title
Capillary Instability of Free Liquid Jets
Authors
N. Ashgriz
A. L. Yarin
Copyright Year
2011
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7264-4_1

Premium Partners