Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

1. Capillary Instability of Free Liquid Jets

verfasst von : N. Ashgriz, A. L. Yarin

Erschienen in: Handbook of Atomization and Sprays

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter deals with capillary instability of straight free liquid jets moving in air. It begins with linear stability theory for small perturbations of Newtonian liquid jets and discusses the unstable modes, characteristic growth rates, temporal and spatial instabilities and their underlying physical mechanisms. The linear theory also provides an estimate of the main droplet size emerging from capillary breakup. Formation of satellite modes is treated in the framework of either asymptotic methods or direct numerical simulations. Then, such additional effects like thermocapillarity, or swirl are taken into account. In addition, quasi-one-dimensional approach for description of capillary breakup is introduced and illustrated in detail for Newtonian and rheologically complex liquid jets (pseudoplastic, dilatant, and viscoelastic polymeric liquids).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bidone, G. Experiences sur la forme et sur la direction des veines et des courants d’eau lances par diverses ouvertures. Imprimerie Royale, Turin, pp. 1–136 (1829). Bidone, G. Experiences sur la forme et sur la direction des veines et des courants d’eau lances par diverses ouvertures. Imprimerie Royale, Turin, pp. 1–136 (1829).
2.
Zurück zum Zitat Savart, F. Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi. Ann. Chim. Phys. 53, 337–386 (1833). Savart, F. Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi. Ann. Chim. Phys. 53, 337–386 (1833).
3.
Zurück zum Zitat Plateau, J. Statique experimentale et theorique des liquids soumis aux seules forces moleculaires. Cited by Lord Rayleigh, Theory of Sound, Vol. II, p. 363, 1945. New York: Dover (1873). Plateau, J. Statique experimentale et theorique des liquids soumis aux seules forces moleculaires. Cited by Lord Rayleigh, Theory of Sound, Vol. II, p. 363, 1945. New York: Dover (1873).
4.
Zurück zum Zitat Rayleigh, W.S. On the instability of jets. Proc. London Math. Soc. 10, 4–13 (1879).CrossRef Rayleigh, W.S. On the instability of jets. Proc. London Math. Soc. 10, 4–13 (1879).CrossRef
5.
Zurück zum Zitat Rayleigh, W. S. On the instability of jets. Proc. London Math. Soc. 4, 10 (1878). Rayleigh, W. S. On the instability of jets. Proc. London Math. Soc. 4, 10 (1878).
6.
Zurück zum Zitat Rayleigh, W.S. Further observations upon liquid jets. Proc. London Math. Soc. 34, 130–145 (1882).CrossRef Rayleigh, W.S. Further observations upon liquid jets. Proc. London Math. Soc. 34, 130–145 (1882).CrossRef
7.
Zurück zum Zitat Rayleigh, W.S. Theory of Sound, 2nd edn, Vol. 2. London: Macmillan (1896). Reprinted in 1945, New York: Dover, 504 pp.MATH Rayleigh, W.S. Theory of Sound, 2nd edn, Vol. 2. London: Macmillan (1896). Reprinted in 1945, New York: Dover, 504 pp.MATH
8.
Zurück zum Zitat Magnus, G. Hydraulische Untersuchungen. Anne. Phys. Chem. 95, 1–59 (1855).CrossRef Magnus, G. Hydraulische Untersuchungen. Anne. Phys. Chem. 95, 1–59 (1855).CrossRef
9.
Zurück zum Zitat Boussinesq. J. Mem. Acad. Sci. Paris 23, 639 (1877). Boussinesq. J. Mem. Acad. Sci. Paris 23, 639 (1877).
10.
Zurück zum Zitat Weber, C. On the breakdown of a fluid jet, Zum Zerfall eines Flussigkeitsstrahles. Z. Angew. Math. und Mech. 11, 136–154 (1931).MATHCrossRef Weber, C. On the breakdown of a fluid jet, Zum Zerfall eines Flussigkeitsstrahles. Z. Angew. Math. und Mech. 11, 136–154 (1931).MATHCrossRef
11.
Zurück zum Zitat Nayfeh, A. H. Non-linear stability of a liquid jet. Phys. Fluids 13, 841–847 (1970).MATHCrossRef Nayfeh, A. H. Non-linear stability of a liquid jet. Phys. Fluids 13, 841–847 (1970).MATHCrossRef
12.
Zurück zum Zitat Nayfeh, A. H. & Hassan, S.D. The method of multiple scales and nonlinear dispersive waves. J. Fluid Mech. 48, 463–475 (1971).MathSciNetMATHCrossRef Nayfeh, A. H. & Hassan, S.D. The method of multiple scales and nonlinear dispersive waves. J. Fluid Mech. 48, 463–475 (1971).MathSciNetMATHCrossRef
13.
Zurück zum Zitat Keller, J. B., Rubinow, S. I., & Tu, Y. O. Spatial instability of a jet. Phys. Fluids 16, 2052–2055 (1973).CrossRef Keller, J. B., Rubinow, S. I., & Tu, Y. O. Spatial instability of a jet. Phys. Fluids 16, 2052–2055 (1973).CrossRef
14.
Zurück zum Zitat Bogy, D. B. Drop formation in a circular liquid jet. Annu. Rev. Fluid Mech. 11, 207–228 (1979).CrossRef Bogy, D. B. Drop formation in a circular liquid jet. Annu. Rev. Fluid Mech. 11, 207–228 (1979).CrossRef
15.
Zurück zum Zitat Leib, S. J. & Goldstein, M. E. The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479–500 (1986).MATHCrossRef Leib, S. J. & Goldstein, M. E. The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479–500 (1986).MATHCrossRef
16.
Zurück zum Zitat Haenlein, A. Disintegration of a liquid jet. NACA-TM-659 (1931). Haenlein, A. Disintegration of a liquid jet. NACA-TM-659 (1931).
17.
Zurück zum Zitat Donnelly, R. J. & Glaberson. W. Experiments on the capillary instability of a jet. Proc. R. Soc. Lond. A 209. 547–556 (1966). Donnelly, R. J. & Glaberson. W. Experiments on the capillary instability of a jet. Proc. R. Soc. Lond. A 209. 547–556 (1966).
18.
Zurück zum Zitat Goedde, E. F. & Yuen, M. C. Experiments on liquid jet instability. J. Fluid Mech. 40, 495–511 (1970).CrossRef Goedde, E. F. & Yuen, M. C. Experiments on liquid jet instability. J. Fluid Mech. 40, 495–511 (1970).CrossRef
19.
Zurück zum Zitat McCarthy, M. J. & Molloy, N. A. Review of’ stability of liquid jets and the influence of nozzle design. Chem. Eng. J. 7, 1–20 (1974). McCarthy, M. J. & Molloy, N. A. Review of’ stability of liquid jets and the influence of nozzle design. Chem. Eng. J. 7, 1–20 (1974).
20.
Zurück zum Zitat Sirignano, W. A. & Mehring, C. Review of theory of distortion and disintegration of liquid streams. Prog. Energy Combust. Sci. 26. 609–655 (2000).CrossRef Sirignano, W. A. & Mehring, C. Review of theory of distortion and disintegration of liquid streams. Prog. Energy Combust. Sci. 26. 609–655 (2000).CrossRef
21.
Zurück zum Zitat Vassallo, P. & Ashgriz, N. Satellite formation and merging in liquid jet breakup. Proc. R. Soc. Lond. A 433, 269–286 (1991).MATHCrossRef Vassallo, P. & Ashgriz, N. Satellite formation and merging in liquid jet breakup. Proc. R. Soc. Lond. A 433, 269–286 (1991).MATHCrossRef
22.
Zurück zum Zitat Grant, R. P. & Middleman, S. Newtonian jet stability. AIChE J. 12, 669–678 (1966).CrossRef Grant, R. P. & Middleman, S. Newtonian jet stability. AIChE J. 12, 669–678 (1966).CrossRef
23.
Zurück zum Zitat Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability. Oxford: Claredon (1961).MATH Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability. Oxford: Claredon (1961).MATH
24.
Zurück zum Zitat Sterling, A. M. & Sleicher, C. A. The instability of capillary jets. J. Fluid Mech. 68(3), 477–495 (1975).MATHCrossRef Sterling, A. M. & Sleicher, C. A. The instability of capillary jets. J. Fluid Mech. 68(3), 477–495 (1975).MATHCrossRef
25.
Zurück zum Zitat Reitz, R. D. & Bracco, F. V. Mechanism of atomization of a liquid jet. Phys. Fluids 25(10), 1730–1742 (1982).MATHCrossRef Reitz, R. D. & Bracco, F. V. Mechanism of atomization of a liquid jet. Phys. Fluids 25(10), 1730–1742 (1982).MATHCrossRef
26.
Zurück zum Zitat Yoon, S. S. & Heister, S. D. Categorizing linear theories for atomizing round jets, Atomization and Sprays (SCI), 13(5&6), pp. 499–516 (2003).CrossRef Yoon, S. S. & Heister, S. D. Categorizing linear theories for atomizing round jets, Atomization and Sprays (SCI), 13(5&6), pp. 499–516 (2003).CrossRef
27.
Zurück zum Zitat Batchelor, G. K. An Introduction to Fluid Dynamics. New York: Cambridge University Press (1999), pp. 511–517, 521–526. Batchelor, G. K. An Introduction to Fluid Dynamics. New York: Cambridge University Press (1999), pp. 511–517, 521–526.
28.
Zurück zum Zitat Gordillo, J. M., Perez-Saborid, M., & Ganan-Calvo, A. M. Linear stability of co-flowing liquid–gas jets. J. Fluid Mech. 448, 23–51 (2001).MathSciNetMATHCrossRef Gordillo, J. M., Perez-Saborid, M., & Ganan-Calvo, A. M. Linear stability of co-flowing liquid–gas jets. J. Fluid Mech. 448, 23–51 (2001).MathSciNetMATHCrossRef
29.
Zurück zum Zitat Yarin, A. L. Free Liquid Jets and Films: Hydrodynamics and Rheology. Harlow/New York: Longman/Wiley (1993).MATH Yarin, A. L. Free Liquid Jets and Films: Hydrodynamics and Rheology. Harlow/New York: Longman/Wiley (1993).MATH
30.
31.
Zurück zum Zitat Kase, S. & Matsuo, T. Studies on melt spinning. I. Fundamental equations on the dynamics of melt spinning. J. Polym. Sci., Pt. A 3, 2541–2554 (1965). Kase, S. & Matsuo, T. Studies on melt spinning. I. Fundamental equations on the dynamics of melt spinning. J. Polym. Sci., Pt. A 3, 2541–2554 (1965).
32.
Zurück zum Zitat Matovich, M. A. & Pearson, J. R. A. Spinning a molten threadline. Steady-state viscous flows. Ind. Eng. Chem. Fundam. 8, 512–520 (1969).CrossRef Matovich, M. A. & Pearson, J. R. A. Spinning a molten threadline. Steady-state viscous flows. Ind. Eng. Chem. Fundam. 8, 512–520 (1969).CrossRef
33.
Zurück zum Zitat Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997).CrossRef Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997).CrossRef
34.
Zurück zum Zitat Eggers, J. & Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 71, 036601 (2008).CrossRef Eggers, J. & Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 71, 036601 (2008).CrossRef
35.
Zurück zum Zitat Bechtel, S. E., Cao, J. Z., & Forest, M. G. Practical application of a higher-order perturbation-theory for slender viscoelastic jets and fibers. J. Non-Newton. Fluid Mech. 41, 201–273 (1992).MATHCrossRef Bechtel, S. E., Cao, J. Z., & Forest, M. G. Practical application of a higher-order perturbation-theory for slender viscoelastic jets and fibers. J. Non-Newton. Fluid Mech. 41, 201–273 (1992).MATHCrossRef
36.
Zurück zum Zitat Pimbley, W. T. Drop formation from a liquid jet: A linear one-dimensional analysis considered as boundary value problem. IBM J. Res. Dev. 20, 148–156 (1976).MATHCrossRef Pimbley, W. T. Drop formation from a liquid jet: A linear one-dimensional analysis considered as boundary value problem. IBM J. Res. Dev. 20, 148–156 (1976).MATHCrossRef
37.
38.
Zurück zum Zitat Green, A. E. On the nonlinear behavior of fluid jets. Int. J. Eng. Sci. 14, 49–63 (1976).MATHCrossRef Green, A. E. On the nonlinear behavior of fluid jets. Int. J. Eng. Sci. 14, 49–63 (1976).MATHCrossRef
39.
Zurück zum Zitat Naghdi, P. M. On the applicability of directed fluid jets to Newtonian and non-Newtonian flows. J. Non-Newton. Fluid Mech. 5, 233–265 (1979).MATHCrossRef Naghdi, P. M. On the applicability of directed fluid jets to Newtonian and non-Newtonian flows. J. Non-Newton. Fluid Mech. 5, 233–265 (1979).MATHCrossRef
40.
Zurück zum Zitat Caulk, D. A. & Naghdi, P. M. The influence of twist on the motion of straight elliptical jets. Arch. Ration. Mech. Anal. 69, 1–30 (1979).MathSciNetMATHCrossRef Caulk, D. A. & Naghdi, P. M. The influence of twist on the motion of straight elliptical jets. Arch. Ration. Mech. Anal. 69, 1–30 (1979).MathSciNetMATHCrossRef
41.
Zurück zum Zitat Bogy, D. B. Use of one-dimensional Cosserat theory to study instability of a viscous liquid jet. Phys. Fluids 21, 190–197 (1978).MathSciNetMATHCrossRef Bogy, D. B. Use of one-dimensional Cosserat theory to study instability of a viscous liquid jet. Phys. Fluids 21, 190–197 (1978).MathSciNetMATHCrossRef
42.
Zurück zum Zitat Lopez-Herrera, J. M., Ganan-Calvo, A. M., & Perez-Saboird, M. One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to EHD spraying. J. Aerosol Sci. 30, 895–912 (1999).CrossRef Lopez-Herrera, J. M., Ganan-Calvo, A. M., & Perez-Saboird, M. One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to EHD spraying. J. Aerosol Sci. 30, 895–912 (1999).CrossRef
43.
Zurück zum Zitat Barrero, A. & Loscertales, I. G. Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89–106 (2007).CrossRef Barrero, A. & Loscertales, I. G. Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89–106 (2007).CrossRef
44.
45.
Zurück zum Zitat Leib, S. J. & Goldstein, M. E. Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29, 952–954 (1986).CrossRef Leib, S. J. & Goldstein, M. E. Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29, 952–954 (1986).CrossRef
46.
Zurück zum Zitat Lin, P. S. & Kang, D. J. Atomization of a liquid jet. Phys. Fluids 30, 2000–2006 (1987).CrossRef Lin, P. S. & Kang, D. J. Atomization of a liquid jet. Phys. Fluids 30, 2000–2006 (1987).CrossRef
47.
Zurück zum Zitat Lin, S. P. & Lian, Z. W. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. Phys. Fluids. A 5, 771–773 (1993).CrossRef Lin, S. P. & Lian, Z. W. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. Phys. Fluids. A 5, 771–773 (1993).CrossRef
48.
Zurück zum Zitat Zhou, Z. W. & Lin, S. P. Effects of compressibility on the atomization of liquid jets. J. Propul. Power 8, 736–740 (1992).CrossRef Zhou, Z. W. & Lin, S. P. Effects of compressibility on the atomization of liquid jets. J. Propul. Power 8, 736–740 (1992).CrossRef
49.
Zurück zum Zitat Lin, S. P. Regimes of jet breakup and breakup mechanisms (mathematical aspects). In Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, Vol. 1, ed. K.K. Kuo. Reston: AIAA Inc. (1996), pp. 137–160. Lin, S. P. Regimes of jet breakup and breakup mechanisms (mathematical aspects). In Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, Vol. 1, ed. K.K. Kuo. Reston: AIAA Inc. (1996), pp. 137–160.
50.
Zurück zum Zitat Lin, S. P. & Lian, Z. W. Absolute instability of a liquid jet in a gas. Phys. Fluids A 1(3), 490–493 (1980).CrossRef Lin, S. P. & Lian, Z. W. Absolute instability of a liquid jet in a gas. Phys. Fluids A 1(3), 490–493 (1980).CrossRef
51.
Zurück zum Zitat Lin, S. P. & Chen, J. N. Roles played by the interfacial shears in the instability mechanism of a viscous liquid jet surrounded by a viscous gas in a pipe. J. Fluid Mech. 376, 37–51 (1998).MATHCrossRef Lin, S. P. & Chen, J. N. Roles played by the interfacial shears in the instability mechanism of a viscous liquid jet surrounded by a viscous gas in a pipe. J. Fluid Mech. 376, 37–51 (1998).MATHCrossRef
52.
Zurück zum Zitat Vihinen, I., Honohan, A., & Lin, S. P. Absolute and convective instability of a viscous jet in microgravity. Phys. Fluids 9, 3117–3119 (1997).MathSciNetMATHCrossRef Vihinen, I., Honohan, A., & Lin, S. P. Absolute and convective instability of a viscous jet in microgravity. Phys. Fluids 9, 3117–3119 (1997).MathSciNetMATHCrossRef
53.
Zurück zum Zitat O’Donnel, B., Chen, J. N., & Lin, S. P. Transition from convective to absolute instability in a liquid jet. Phys. Fluids 13, 2732–2734 (2001).CrossRef O’Donnel, B., Chen, J. N., & Lin, S. P. Transition from convective to absolute instability in a liquid jet. Phys. Fluids 13, 2732–2734 (2001).CrossRef
54.
Zurück zum Zitat Lin, S. P. & Reitz, R. D. Drop and spray formation from a liquid jet. Ann. Rev. Fluid Mech. 30, 85–105 (1998).MathSciNetCrossRef Lin, S. P. & Reitz, R. D. Drop and spray formation from a liquid jet. Ann. Rev. Fluid Mech. 30, 85–105 (1998).MathSciNetCrossRef
55.
Zurück zum Zitat Lin, S. P. Breakup of Liquid Sheets and Jets. Cambridge: Cambridge University Press, 2003.MATHCrossRef Lin, S. P. Breakup of Liquid Sheets and Jets. Cambridge: Cambridge University Press, 2003.MATHCrossRef
56.
Zurück zum Zitat Gaster, M. Growth of disturbances in both space and time. J. Fluid Mech. 11, 723–727 (1968). Gaster, M. Growth of disturbances in both space and time. J. Fluid Mech. 11, 723–727 (1968).
57.
Zurück zum Zitat Lin, S. P. & Woods, D. R. Tailored liquid jets. Atom. Sprays 18, 363–374 (2008).CrossRef Lin, S. P. & Woods, D. R. Tailored liquid jets. Atom. Sprays 18, 363–374 (2008).CrossRef
58.
Zurück zum Zitat Chinn, J. J. An appraisal of swirl atomizer inviscid internal flow analysis, Part 2, Inviscid spray cone angle and comparison of inviscid method with experimental results for discharge coefficient, air core radius, and spray angle. Atom. Sprays 19, 283–308 (2009).CrossRef Chinn, J. J. An appraisal of swirl atomizer inviscid internal flow analysis, Part 2, Inviscid spray cone angle and comparison of inviscid method with experimental results for discharge coefficient, air core radius, and spray angle. Atom. Sprays 19, 283–308 (2009).CrossRef
59.
Zurück zum Zitat Craig, L., Barlow, N., Partel, S., Kanya, B., & Lin, S. P. Optimal and non optimal flows in a swirl atomizer. J. Int. Inst. Liquid Atom. Spray Syst. 13, 113–1124 (2009). Craig, L., Barlow, N., Partel, S., Kanya, B., & Lin, S. P. Optimal and non optimal flows in a swirl atomizer. J. Int. Inst. Liquid Atom. Spray Syst. 13, 113–1124 (2009).
60.
Zurück zum Zitat Lafrance, P. & Ritter, R. C. Capillary breakup of a liquid jet with a random initial perturbation. Trans ASME: J. Appl. Mech. 44, 385–388 (1977).CrossRef Lafrance, P. & Ritter, R. C. Capillary breakup of a liquid jet with a random initial perturbation. Trans ASME: J. Appl. Mech. 44, 385–388 (1977).CrossRef
61.
Zurück zum Zitat Pimbley, W. T. & Lee, H.C. Satellite droplet formation in a liquid jet. IBM J. Res. Dev. 21, 21–30 (1977).CrossRef Pimbley, W. T. & Lee, H.C. Satellite droplet formation in a liquid jet. IBM J. Res. Dev. 21, 21–30 (1977).CrossRef
62.
Zurück zum Zitat Scarlett, B. & Parkin, C. S. Droplet production on controlled jet breakup. Chem. Eng. J. 13, 127–141 (1977).CrossRef Scarlett, B. & Parkin, C. S. Droplet production on controlled jet breakup. Chem. Eng. J. 13, 127–141 (1977).CrossRef
63.
Zurück zum Zitat Yuen, M. C. Non-linear capillary instability of a liquid jet. J. Fluid Mech. 33, 151–163 (1968).MATHCrossRef Yuen, M. C. Non-linear capillary instability of a liquid jet. J. Fluid Mech. 33, 151–163 (1968).MATHCrossRef
64.
Zurück zum Zitat Kakutani, T., Inoue, Y., & Kan, T. Nonlinear capillary waves on the surface of liquid column. J. Phys. Soc. Jpn. 37, 529–538 (1974).CrossRef Kakutani, T., Inoue, Y., & Kan, T. Nonlinear capillary waves on the surface of liquid column. J. Phys. Soc. Jpn. 37, 529–538 (1974).CrossRef
65.
Zurück zum Zitat Lafrance, P. Nonlinear breakup of a liquid jet. Phys. Fluids 17, 1913–1914 (1974).CrossRef Lafrance, P. Nonlinear breakup of a liquid jet. Phys. Fluids 17, 1913–1914 (1974).CrossRef
66.
Zurück zum Zitat Lafrance, P. Nonlinear breakup of a laminar liquid jet. Phys. Fluids 18, 428–432 (1975).MATHCrossRef Lafrance, P. Nonlinear breakup of a laminar liquid jet. Phys. Fluids 18, 428–432 (1975).MATHCrossRef
67.
Zurück zum Zitat Bogy, D. B. Break-up of a liquid jet: second perturbation solution for one-dimensional Cosserat theory. IBM J. Res. Dev. 23, 87–92 (1979).MATHCrossRef Bogy, D. B. Break-up of a liquid jet: second perturbation solution for one-dimensional Cosserat theory. IBM J. Res. Dev. 23, 87–92 (1979).MATHCrossRef
68.
Zurück zum Zitat Bogy, D. B. Break-up of a liquid jet: Third perturbation Cosserat solution. Phys. Fluids 22, 224–230 (1979).MATHCrossRef Bogy, D. B. Break-up of a liquid jet: Third perturbation Cosserat solution. Phys. Fluids 22, 224–230 (1979).MATHCrossRef
69.
Zurück zum Zitat Bogy, D. B. Wave propagation and instability in a circular semi-infinite liquid jet harmonically forced at the nozzle. Trans ASME: J. Appl. Mech. 45, 469–474 (1978).MATHCrossRef Bogy, D. B. Wave propagation and instability in a circular semi-infinite liquid jet harmonically forced at the nozzle. Trans ASME: J. Appl. Mech. 45, 469–474 (1978).MATHCrossRef
70.
Zurück zum Zitat Taub, H. H. Investigation of nonlinear waves on liquid jets. Phys. Fluids 19, 1124–1129 (1976).CrossRef Taub, H. H. Investigation of nonlinear waves on liquid jets. Phys. Fluids 19, 1124–1129 (1976).CrossRef
71.
Zurück zum Zitat Chaudhary, K. C. & Redekopp, L. G. The nonlinear capillary instability of a liquid jet. Part 1. Theory. J. Fluid Mech. 96, 257–274 (1980).MATHCrossRef Chaudhary, K. C. & Redekopp, L. G. The nonlinear capillary instability of a liquid jet. Part 1. Theory. J. Fluid Mech. 96, 257–274 (1980).MATHCrossRef
72.
Zurück zum Zitat Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behavior before droplet formation. J. Fluid Mech. 96, 275–286 (1980).MATHCrossRef Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behavior before droplet formation. J. Fluid Mech. 96, 275–286 (1980).MATHCrossRef
73.
Zurück zum Zitat Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 3. Experiments on satellite drop formation and control. J. Fluid Mech. 96, 287–298 (1980).MATHCrossRef Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 3. Experiments on satellite drop formation and control. J. Fluid Mech. 96, 287–298 (1980).MATHCrossRef
74.
Zurück zum Zitat Mansour, N. N. & Lundgren, T. S. Satellite formation in capillary jet breakup. Phys. Fluids A 2, 1141–1144 (1990).CrossRef Mansour, N. N. & Lundgren, T. S. Satellite formation in capillary jet breakup. Phys. Fluids A 2, 1141–1144 (1990).CrossRef
75.
Zurück zum Zitat Ashgriz, N. & Mashayek, F. Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163–190 (1995).MATHCrossRef Ashgriz, N. & Mashayek, F. Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163–190 (1995).MATHCrossRef
76.
Zurück zum Zitat Ambravaneswaran, B., Phillips, S. D., & Basaran, O. A. Theoretical analysis of dripping faucet. Phys. Rev. Lett. 85, 5332–5335 (2000).CrossRef Ambravaneswaran, B., Phillips, S. D., & Basaran, O. A. Theoretical analysis of dripping faucet. Phys. Rev. Lett. 85, 5332–5335 (2000).CrossRef
77.
Zurück zum Zitat Basaran, O. A. & Suryo, R. The invisible jet. Nat. Phys. 3, 679–680 (2007).CrossRef Basaran, O. A. & Suryo, R. The invisible jet. Nat. Phys. 3, 679–680 (2007).CrossRef
78.
Zurück zum Zitat Bogy, D. B., Shine, S. J., & Talke, F. E. Finite difference solution of the Cosserat fluid jet equations. J. Comput. Phys. 38, 294–326 (1980).MATHCrossRef Bogy, D. B., Shine, S. J., & Talke, F. E. Finite difference solution of the Cosserat fluid jet equations. J. Comput. Phys. 38, 294–326 (1980).MATHCrossRef
79.
Zurück zum Zitat Eggers, J. Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 72, 3458–3460 (1993).CrossRef Eggers, J. Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 72, 3458–3460 (1993).CrossRef
80.
Zurück zum Zitat Brenner, M. P., Shi, X. D., & Nagel, S.R. Iterated instabilities during droplet fission. Phys. Rev. Lett. 73, 3391–3394 (1994).CrossRef Brenner, M. P., Shi, X. D., & Nagel, S.R. Iterated instabilities during droplet fission. Phys. Rev. Lett. 73, 3391–3394 (1994).CrossRef
83.
Zurück zum Zitat Brenner, M. P., Lister, J., & Stone, H. A. Pinching threads, singularities and the number 0.0304. Phys. Fluids 8, 2827–2836 (1996).MathSciNetMATHCrossRef Brenner, M. P., Lister, J., & Stone, H. A. Pinching threads, singularities and the number 0.0304. Phys. Fluids 8, 2827–2836 (1996).MathSciNetMATHCrossRef
84.
Zurück zum Zitat Brenner, M. P., Eggers, J., Joseph, K., Nagel, S. R., & Shi, X. D. Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids 9, 1573–1590 (1997).CrossRef Brenner, M. P., Eggers, J., Joseph, K., Nagel, S. R., & Shi, X. D. Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids 9, 1573–1590 (1997).CrossRef
85.
Zurück zum Zitat Cline, H. E. & Anthony, T. R. The effects of harmonics on the capillary instability of liquid jets. J. Appl. Phys. 49 (6), 3203–3208 (1978).CrossRef Cline, H. E. & Anthony, T. R. The effects of harmonics on the capillary instability of liquid jets. J. Appl. Phys. 49 (6), 3203–3208 (1978).CrossRef
86.
Zurück zum Zitat Rutland, D. F. & Jameson, G. J. Theoretical prediction of the sizes of drops formed in the breakup of capillary jets. Chem. Eng. Sci. 25(11-E), 1689–1698 (1970). Rutland, D. F. & Jameson, G. J. Theoretical prediction of the sizes of drops formed in the breakup of capillary jets. Chem. Eng. Sci. 25(11-E), 1689–1698 (1970).
87.
Zurück zum Zitat Hibling, J. & Heister, S. D. Droplet size control in liquid jet breakup. Phys. Fluids 8(6), 1574–1581 (1996).CrossRef Hibling, J. & Heister, S. D. Droplet size control in liquid jet breakup. Phys. Fluids 8(6), 1574–1581 (1996).CrossRef
88.
Zurück zum Zitat Orme, M. & Muntz, E. P. The manipulation of capillary stream breakup using amplitude-modulated disturbances: A pictorial and quantitative representation. Phys. Fluids A 2(7), 1124–1140 (1990).CrossRef Orme, M. & Muntz, E. P. The manipulation of capillary stream breakup using amplitude-modulated disturbances: A pictorial and quantitative representation. Phys. Fluids A 2(7), 1124–1140 (1990).CrossRef
89.
Zurück zum Zitat Orme, M., Willis, K., & Nguyen, T.-V. Droplet patterns from capillary stream breakup. Phys. Fluids A 5(1), 80–90 (1993).CrossRef Orme, M., Willis, K., & Nguyen, T.-V. Droplet patterns from capillary stream breakup. Phys. Fluids A 5(1), 80–90 (1993).CrossRef
90.
Zurück zum Zitat Bousfield, D. W., Keunings, R., Marrucci, G., & Denn, M. M. Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J. Non-Newtonian Fluid Mech. 21, 79–97 (1986).CrossRef Bousfield, D. W., Keunings, R., Marrucci, G., & Denn, M. M. Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J. Non-Newtonian Fluid Mech. 21, 79–97 (1986).CrossRef
91.
Zurück zum Zitat Bousfield, D., Stockel, I. H., & Nanivadekar, C. K. The breakup of viscous jets with large velocity modulations. J. Fluid Mech. 218, 601–617 (1990).CrossRef Bousfield, D., Stockel, I. H., & Nanivadekar, C. K. The breakup of viscous jets with large velocity modulations. J. Fluid Mech. 218, 601–617 (1990).CrossRef
92.
Zurück zum Zitat Huynh, H., Ashgriz, N., & Mashayek, F. Instability of a liquid jet subject to disturbances composed of two wave numbers. J. Fluid Mech. 320, 185–210 (1996).MATHCrossRef Huynh, H., Ashgriz, N., & Mashayek, F. Instability of a liquid jet subject to disturbances composed of two wave numbers. J. Fluid Mech. 320, 185–210 (1996).MATHCrossRef
93.
Zurück zum Zitat Spangler, C. A., Hibling, J. H., & Heister, S. D. Nonlinear modeling of jet atomization in the wind-induced regime. Phys. Fluids 7 (5), 964–971 (1995).MATHCrossRef Spangler, C. A., Hibling, J. H., & Heister, S. D. Nonlinear modeling of jet atomization in the wind-induced regime. Phys. Fluids 7 (5), 964–971 (1995).MATHCrossRef
94.
Zurück zum Zitat Tjahjadi, M., Stone, H.A., & Ottino, J.M., Satellite and subsatellite formation in capillary breakup. J. Fluid Mech. 243, 297–317 (1992).CrossRef Tjahjadi, M., Stone, H.A., & Ottino, J.M., Satellite and subsatellite formation in capillary breakup. J. Fluid Mech. 243, 297–317 (1992).CrossRef
95.
Zurück zum Zitat Bauer, H. F. Free liquid surface response induced by fluctuations of thermal Marangoni convection. AIAA J. 22, 421–428 (1983).CrossRef Bauer, H. F. Free liquid surface response induced by fluctuations of thermal Marangoni convection. AIAA J. 22, 421–428 (1983).CrossRef
96.
97.
Zurück zum Zitat Dijkstra, H. A. & Steen, P. H. Thermocapillary stabilization of the capillary breakup of an annular film of liquid. J. Fluid Mech. 229, 205–228 (1991).MathSciNetMATHCrossRef Dijkstra, H. A. & Steen, P. H. Thermocapillary stabilization of the capillary breakup of an annular film of liquid. J. Fluid Mech. 229, 205–228 (1991).MathSciNetMATHCrossRef
98.
Zurück zum Zitat Mashayek, F. & Ashgriz, N. Nonlinear instability of liquid jets with thermocapillarity. J. Fluid Mech. 283, 97–123 (1995).MATHCrossRef Mashayek, F. & Ashgriz, N. Nonlinear instability of liquid jets with thermocapillarity. J. Fluid Mech. 283, 97–123 (1995).MATHCrossRef
99.
Zurück zum Zitat Ostrach, S. Low-gravity fluid flows. Ann. Rev. Fluid Mech. 14, 13–345 (1982).CrossRef Ostrach, S. Low-gravity fluid flows. Ann. Rev. Fluid Mech. 14, 13–345 (1982).CrossRef
100.
Zurück zum Zitat Davis, S. H. Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19, 403–435 (1987).MATHCrossRef Davis, S. H. Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19, 403–435 (1987).MATHCrossRef
101.
Zurück zum Zitat Faidley, R. W. & Panton, R. L. Measurement of liquid jet instability induced by surface tension variations. Exp. Therm. Fluid Sci. 3, 383–387 (1990).CrossRef Faidley, R. W. & Panton, R. L. Measurement of liquid jet instability induced by surface tension variations. Exp. Therm. Fluid Sci. 3, 383–387 (1990).CrossRef
102.
Zurück zum Zitat Nahas, N. M. & Panton, R. L. Control of surface tension flows-Instability of a liquid jet. J. Fluids Eng. Trans. ASME 112, 3, 296–301 (1990).CrossRef Nahas, N. M. & Panton, R. L. Control of surface tension flows-Instability of a liquid jet. J. Fluids Eng. Trans. ASME 112, 3, 296–301 (1990).CrossRef
103.
Zurück zum Zitat Fulnari, E. P. Temporal instability of viscous liquid microjets with spatially varying surface tension. J. Phys. A: Math. Gen. 38, 263–276 (2005).CrossRef Fulnari, E. P. Temporal instability of viscous liquid microjets with spatially varying surface tension. J. Phys. A: Math. Gen. 38, 263–276 (2005).CrossRef
104.
Zurück zum Zitat Saroka, M., Guo, Y., & Ashgriz, N. Nonlinear instability of an evaporating capillary jet. AIAA J. 39(9), 1728–1734 (September 2001).CrossRef Saroka, M., Guo, Y., & Ashgriz, N. Nonlinear instability of an evaporating capillary jet. AIAA J. 39(9), 1728–1734 (September 2001).CrossRef
106.
107.
Zurück zum Zitat Entov, V. M., Kordonskii, V. I., Kuz’min, V. A., Shul’man, Z. P., & Yarin, A. L. Investigation of the decomposition of jets of rheologically complex liquids. J. Appl. Mech. Tech. Phys. 21, 365–371 (1980).CrossRef Entov, V. M., Kordonskii, V. I., Kuz’min, V. A., Shul’man, Z. P., & Yarin, A. L. Investigation of the decomposition of jets of rheologically complex liquids. J. Appl. Mech. Tech. Phys. 21, 365–371 (1980).CrossRef
108.
Zurück zum Zitat Yarin, A. L., Zussman, E., Theron, S. A., Rahimi, S., Sobe, Z., & Hasan, D. Elongational behavior of gelled propellant stimulants. J. Rheol. 48, 101–116 (2004).CrossRef Yarin, A. L., Zussman, E., Theron, S. A., Rahimi, S., Sobe, Z., & Hasan, D. Elongational behavior of gelled propellant stimulants. J. Rheol. 48, 101–116 (2004).CrossRef
109.
Zurück zum Zitat Goldin, M., Pfeffer, R., & Shinnar, R. Break-up of a capillary jet of a non-Newtonian fluid having a yield stress. Chem. Eng. J. 4, 8–20 (1972).CrossRef Goldin, M., Pfeffer, R., & Shinnar, R. Break-up of a capillary jet of a non-Newtonian fluid having a yield stress. Chem. Eng. J. 4, 8–20 (1972).CrossRef
110.
Zurück zum Zitat Goldin, M., Yerushalmi, J., Pfeffer, R., & Shinnar, R. Breakup of a laminar capillary jet of viscoelastic fluid. J. Fluid Mech. 38, 689–711 (1969).CrossRef Goldin, M., Yerushalmi, J., Pfeffer, R., & Shinnar, R. Breakup of a laminar capillary jet of viscoelastic fluid. J. Fluid Mech. 38, 689–711 (1969).CrossRef
111.
Zurück zum Zitat Entov, V. M. & Yarin, A. L. Influence of elastic stresses on the capillary breakup of jets of dilute polymer solutions. Fluid Dyn. 19, 21–29 (1984).MATHCrossRef Entov, V. M. & Yarin, A. L. Influence of elastic stresses on the capillary breakup of jets of dilute polymer solutions. Fluid Dyn. 19, 21–29 (1984).MATHCrossRef
112.
Zurück zum Zitat Rubin, H. & Wharshavsky, M. A note on the breakup of viscoelastic liquid jets. Isr. J. Technol. 8, 285–288 (1970). Rubin, H. & Wharshavsky, M. A note on the breakup of viscoelastic liquid jets. Isr. J. Technol. 8, 285–288 (1970).
113.
Zurück zum Zitat Gordon, M., Yerushalmi, J., & Shinnar, R. Instability of jets of non-Newtonian fluids. Trans. Soc. Rheol. 17, 303–324 (1973).CrossRef Gordon, M., Yerushalmi, J., & Shinnar, R. Instability of jets of non-Newtonian fluids. Trans. Soc. Rheol. 17, 303–324 (1973).CrossRef
114.
Zurück zum Zitat Goren, S. & Gavis, J. Transverse wave motion on a thin capillary jet of a viscoelastic liquid. Phys. Fluids 4, 575–579 (1961).MathSciNetMATHCrossRef Goren, S. & Gavis, J. Transverse wave motion on a thin capillary jet of a viscoelastic liquid. Phys. Fluids 4, 575–579 (1961).MathSciNetMATHCrossRef
115.
Zurück zum Zitat Han, T., Yarin, A. L., & Reneker, D. H. Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49, 1651–1658 (2008).CrossRef Han, T., Yarin, A. L., & Reneker, D. H. Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49, 1651–1658 (2008).CrossRef
116.
Zurück zum Zitat Joseph, D. D. Fluid Dynamics of Viscoelastic Liquids. New York: Springer (1990).MATH Joseph, D. D. Fluid Dynamics of Viscoelastic Liquids. New York: Springer (1990).MATH
117.
Zurück zum Zitat Entov, V. M. & Kestenboim, Kh. S. Mechanics of fiber formation. Fluid Dyn. 22, 677–686 (1987).MATHCrossRef Entov, V. M. & Kestenboim, Kh. S. Mechanics of fiber formation. Fluid Dyn. 22, 677–686 (1987).MATHCrossRef
118.
Zurück zum Zitat Reneker, D. H., Yarin, A. L., Zussman, E., & Xu, H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195 (2007).CrossRef Reneker, D. H., Yarin, A. L., Zussman, E., & Xu, H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195 (2007).CrossRef
119.
Zurück zum Zitat Bazilevsky, A. V., Voronkov, S. I., Entov, V. M., & Rozhkov, A. N. Orientational effects in capillary breakup of jets and threads of dilute polymer solutions. Sov. Phys. Doklady 257, 336–339 (1981) (the English version in Vol. 26). Bazilevsky, A. V., Voronkov, S. I., Entov, V. M., & Rozhkov, A. N. Orientational effects in capillary breakup of jets and threads of dilute polymer solutions. Sov. Phys. Doklady 257, 336–339 (1981) (the English version in Vol. 26).
120.
Zurück zum Zitat Stelter, M., Brenn, G., Yarin, A. L., Singh, R. P., & Durst, F. Validation and application of a novel elongational device for polymer solutions. J. Rheol. 44, 595–616 (2000).CrossRef Stelter, M., Brenn, G., Yarin, A. L., Singh, R. P., & Durst, F. Validation and application of a novel elongational device for polymer solutions. J. Rheol. 44, 595–616 (2000).CrossRef
121.
Zurück zum Zitat Schümmer, P. & Tebel, K. H. A new elongational rheometer for polymer solutions. J. Non-Newtonian Fluid Mech. 12, 331–347 (1983).CrossRef Schümmer, P. & Tebel, K. H. A new elongational rheometer for polymer solutions. J. Non-Newtonian Fluid Mech. 12, 331–347 (1983).CrossRef
122.
Zurück zum Zitat Anna, S. L. & McKinley, G. H. Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol. 45, 115–138 (2001).CrossRef Anna, S. L. & McKinley, G. H. Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol. 45, 115–138 (2001).CrossRef
123.
Zurück zum Zitat Kroesser, F. W. & Middleman, S. Viscoelastic jet stability. AIChE J. 15, 383–386 (1969).CrossRef Kroesser, F. W. & Middleman, S. Viscoelastic jet stability. AIChE J. 15, 383–386 (1969).CrossRef
124.
Zurück zum Zitat Rubin, H. Breakup of viscoelastic liquid jets. Isr. J. Technol. 9, 579–581 (1971). Rubin, H. Breakup of viscoelastic liquid jets. Isr. J. Technol. 9, 579–581 (1971).
125.
Zurück zum Zitat Sagiv, A., Rubin, H., & Takserman-Krozer, R. On the breakup of cylindrical liquid jets. Isr. J. Technol. 11, 349–354 (1973). Sagiv, A., Rubin, H., & Takserman-Krozer, R. On the breakup of cylindrical liquid jets. Isr. J. Technol. 11, 349–354 (1973).
126.
Zurück zum Zitat Sagiv, A. & Takserman-Krozer, R. Capillary breakup of viscoelastic liquid jet of variable cross-section. Rheol. Acta 14, 420–426 (1975).CrossRef Sagiv, A. & Takserman-Krozer, R. Capillary breakup of viscoelastic liquid jet of variable cross-section. Rheol. Acta 14, 420–426 (1975).CrossRef
127.
Zurück zum Zitat Goren, S. L. & Gottlieb, M. Surface-tension-driven breakup of viscoelastic liquid threads. J. Fluid Mech. 120, 245–266 (1982).MathSciNetMATHCrossRef Goren, S. L. & Gottlieb, M. Surface-tension-driven breakup of viscoelastic liquid threads. J. Fluid Mech. 120, 245–266 (1982).MathSciNetMATHCrossRef
128.
Zurück zum Zitat Lee, W. K., Yu, K. L., & Flumerfelt, R. W. Instability of stationary and uniformly moving cylindrical fluid bodies. Int. J. Multiphase Flow 7, 385–400 (1981).MATHCrossRef Lee, W. K., Yu, K. L., & Flumerfelt, R. W. Instability of stationary and uniformly moving cylindrical fluid bodies. Int. J. Multiphase Flow 7, 385–400 (1981).MATHCrossRef
129.
130.
Zurück zum Zitat Li, J. & Fontelos, M. A. Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study. Phys. Fluids 15, 922–937 (2003).CrossRef Li, J. & Fontelos, M. A. Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study. Phys. Fluids 15, 922–937 (2003).CrossRef
131.
Zurück zum Zitat Clasen, C., Eggers, J., Fontelos, M. A., Li, J., & McKinley, G. H. The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283–308 (2006).MATHCrossRef Clasen, C., Eggers, J., Fontelos, M. A., Li, J., & McKinley, G. H. The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283–308 (2006).MATHCrossRef
132.
Zurück zum Zitat Oliveira, M. S. N. & McKinley, G. H. Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers. Phys. Fluids 17, 071704 (2005).CrossRef Oliveira, M. S. N. & McKinley, G. H. Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers. Phys. Fluids 17, 071704 (2005).CrossRef
133.
Zurück zum Zitat Renardy, M. Some comments on the surface-tension driven break-up (or lack of it) of viscoelastic jets. J. Non-Newton. Fluid Mech. 51, 97–107 (1994).CrossRef Renardy, M. Some comments on the surface-tension driven break-up (or lack of it) of viscoelastic jets. J. Non-Newton. Fluid Mech. 51, 97–107 (1994).CrossRef
134.
Zurück zum Zitat Renardy, M. A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets. J. Non-Newton. Fluid Mech. 59, 267–282 (1995).CrossRef Renardy, M. A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets. J. Non-Newton. Fluid Mech. 59, 267–282 (1995).CrossRef
135.
Zurück zum Zitat Bazilevsky, A. V., Entov, V. M., & Rozhkov, A. N. Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym. Sci. Ser. A 43, 716–726 (2001). Bazilevsky, A. V., Entov, V. M., & Rozhkov, A. N. Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym. Sci. Ser. A 43, 716–726 (2001).
136.
Zurück zum Zitat Ziabicki, A. Fundamentals of Fibre Formation. London: Wiley (1976). Ziabicki, A. Fundamentals of Fibre Formation. London: Wiley (1976).
137.
Zurück zum Zitat Ziabicki, A. & Kawai, H. (editors). High-Speed Fiber Spinning. New York: Wiley (1985). Ziabicki, A. & Kawai, H. (editors). High-Speed Fiber Spinning. New York: Wiley (1985).
Metadaten
Titel
Capillary Instability of Free Liquid Jets
verfasst von
N. Ashgriz
A. L. Yarin
Copyright-Jahr
2011
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7264-4_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.