Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2019

05-05-2018 | Original Research

Caputo–Riesz-Feller fractional wave equation: analytic and approximate solutions and their continuation

Authors: S. Shamseldeen, A. Elsaid, S. Madkour

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article a time-space fractional wave equation is studied. In the new proposed fractional model, the second-order time derivative is replaced with a fractional derivative in Caputo sense, and the second-order space derivative is replaced with a Riesz-Feller derivative defined on infinite space domain. The fundamental solution of fractional wave equation is obtained in terms of Mittag-Leffler function in two parameters, that is by using the joint Laplace–Fourier transform method. We prove the continuation of the solution of the generalized Riesz wave equation as the skewness parameter tends to zero to the one of the corresponding fractional wave equation with classical Riesz derivative, this is accomplished by using the Lebesgue’s dominated convergence theorem. The optimal homotopy analysis method (OHAM) is employed to obtain semi-analytic solution of a newly proposed initial-value fractional wave problem, considering three numerical simulations. The continuation of the optimal solution and its dependence on the fractional derivative parameters are investigated. The study reveals that the OHAM is reliable and effective in case of fractional Riesz-Feller operator represents the fractional Laplacian operator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29(1–4), 145–155 (2002)MathSciNetMATHCrossRef Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29(1–4), 145–155 (2002)MathSciNetMATHCrossRef
2.
go back to reference Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012)MathSciNetMATHCrossRef Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012)MathSciNetMATHCrossRef
3.
go back to reference Chen, W., Holm, S.: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115(4), 1424–1430 (2004)CrossRef Chen, W., Holm, S.: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115(4), 1424–1430 (2004)CrossRef
4.
go back to reference Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26(2), 448–479 (2010)MathSciNetMATH Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26(2), 448–479 (2010)MathSciNetMATH
5.
go back to reference Elsaid, A.: The variational iteration method for solving Riesz fractional partial differential equations. Comput. Math. Appl. 60(7), 1940–1947 (2010)MathSciNetMATHCrossRef Elsaid, A.: The variational iteration method for solving Riesz fractional partial differential equations. Comput. Math. Appl. 60(7), 1940–1947 (2010)MathSciNetMATHCrossRef
6.
go back to reference Elsaid, A.: Homotopy analysis method for solving a class of fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3655–3664 (2011)MathSciNetMATHCrossRef Elsaid, A.: Homotopy analysis method for solving a class of fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3655–3664 (2011)MathSciNetMATHCrossRef
7.
go back to reference Elsaid, A.: Adomian polynomials: A powerful tool for iterative methods of series solution of nonlinear equations. J. Appl. Anal. Comput. 2(4), 381–394 (2012)MathSciNetMATH Elsaid, A.: Adomian polynomials: A powerful tool for iterative methods of series solution of nonlinear equations. J. Appl. Anal. Comput. 2(4), 381–394 (2012)MathSciNetMATH
9.
go back to reference Elsaid, A., Madkour, S., Elkalla, I.: A study of a spatial fractional burger equation via the optimal homotopy analysis method. Commun. Adv. Comput. Sci. Appl. 2016(2), 73–81 (2016) Elsaid, A., Madkour, S., Elkalla, I.: A study of a spatial fractional burger equation via the optimal homotopy analysis method. Commun. Adv. Comput. Sci. Appl. 2016(2), 73–81 (2016)
10.
go back to reference Elsaid, A., Shamseldeen, S., Madkour, S.: Iterative solution of fractional diffusion equation modelling anomalous diffusion. Appl. Appl. Math. Int. J. 11(2), 815–827 (2016)MathSciNetMATH Elsaid, A., Shamseldeen, S., Madkour, S.: Iterative solution of fractional diffusion equation modelling anomalous diffusion. Appl. Appl. Math. Int. J. 11(2), 815–827 (2016)MathSciNetMATH
11.
go back to reference Elsaid, A., Shamseldeen, S., Madkour, S.: Semianalytic solution of space-time fractional diffusion equation. Int. J. Differ. Equ. 2016 (2016) Elsaid, A., Shamseldeen, S., Madkour, S.: Semianalytic solution of space-time fractional diffusion equation. Int. J. Differ. Equ. 2016 (2016)
12.
go back to reference Gorenflo, R., Luchko, Y., Mainardi, F.: Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118(1), 175–191 (2000)MathSciNetMATHCrossRef Gorenflo, R., Luchko, Y., Mainardi, F.: Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118(1), 175–191 (2000)MathSciNetMATHCrossRef
13.
go back to reference Gorenflo, R., Mainardi, F.: Fractional diffusion processes: probability distributions and continuous time random walk. In: Processes with long-range correlations, pp. 148–166. Springer (2003) Gorenflo, R., Mainardi, F.: Fractional diffusion processes: probability distributions and continuous time random walk. In: Processes with long-range correlations, pp. 148–166. Springer (2003)
14.
go back to reference Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284(1), 521–541 (2002)MATHCrossRef Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284(1), 521–541 (2002)MATHCrossRef
15.
go back to reference Gorenflo, R., Vivoli, A.: Fully discrete random walks for space-time fractional diffusion equations. Signal Process. 83(11), 2411–2420 (2003)MATHCrossRef Gorenflo, R., Vivoli, A.: Fully discrete random walks for space-time fractional diffusion equations. Signal Process. 83(11), 2411–2420 (2003)MATHCrossRef
16.
go back to reference Herzallah, M.A., El-Sayed, A.M., Baleanu, D.: On the fractional-order diffusion-wave process. Rom. J. Phys. 55(3–4), 274–284 (2010)MathSciNetMATH Herzallah, M.A., El-Sayed, A.M., Baleanu, D.: On the fractional-order diffusion-wave process. Rom. J. Phys. 55(3–4), 274–284 (2010)MathSciNetMATH
17.
go back to reference Huang, F., Liu, F.: The fundamental solution of the space-time fractional advection-dispersion equation. J. Appl. Math. Comput. 18(1–2), 339–350 (2005)MathSciNetMATHCrossRef Huang, F., Liu, F.: The fundamental solution of the space-time fractional advection-dispersion equation. J. Appl. Math. Comput. 18(1–2), 339–350 (2005)MathSciNetMATHCrossRef
18.
go back to reference Jafari, H., Seifi, S.: Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2006–2012 (2009)MathSciNetMATHCrossRef Jafari, H., Seifi, S.: Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2006–2012 (2009)MathSciNetMATHCrossRef
19.
go back to reference Liao, S.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Boca Raton (2003)CrossRef Liao, S.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Boca Raton (2003)CrossRef
20.
go back to reference Liao, S.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15(8), 2003–2016 (2010)MathSciNetMATHCrossRef Liao, S.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15(8), 2003–2016 (2010)MathSciNetMATHCrossRef
22.
go back to reference Mainardi, F., Pagnini, G., Luchko, Y.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(cond-mat/0702419), 153–192 (2007) Mainardi, F., Pagnini, G., Luchko, Y.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(cond-mat/0702419), 153–192 (2007)
23.
go back to reference Mainardi, F., Spada, G.: Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 193(1), 133–160 (2011)CrossRef Mainardi, F., Spada, G.: Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 193(1), 133–160 (2011)CrossRef
24.
go back to reference Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)MathSciNetMATHCrossRef Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)MathSciNetMATHCrossRef
25.
go back to reference Molliq, Y., Noorani, M.S.M., Hashim, I.: Variational iteration method for fractional heat-and wave-like equations. Nonlinear Anal. Real World Appl. 10(3), 1854–1869 (2009)MathSciNetMATHCrossRef Molliq, Y., Noorani, M.S.M., Hashim, I.: Variational iteration method for fractional heat-and wave-like equations. Nonlinear Anal. Real World Appl. 10(3), 1854–1869 (2009)MathSciNetMATHCrossRef
26.
go back to reference Momani, S.: Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method. Appl. Math. Comput. 165(2), 459–472 (2005)MathSciNetMATH Momani, S.: Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method. Appl. Math. Comput. 165(2), 459–472 (2005)MathSciNetMATH
27.
go back to reference Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic press, Cambrifge (1998)MATH Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic press, Cambrifge (1998)MATH
28.
go back to reference Ray, S.S.: A new analytical modelling for nonlocal generalized riesz fractional sine-gordon equation. J. King Saud Univ. Sci. 28(1), 48–54 (2016)MathSciNetCrossRef Ray, S.S.: A new analytical modelling for nonlocal generalized riesz fractional sine-gordon equation. J. King Saud Univ. Sci. 28(1), 48–54 (2016)MathSciNetCrossRef
29.
go back to reference Saxena, R.K., Tomovski, Ž., Sandev, T.: Fractional helmholtz and fractional wave equations with riesz-feller and generalized riemann-liouville fractional derivatives. Eur. J. Pure Appl. Math. 7(3), 312–334 (2014)MathSciNetMATH Saxena, R.K., Tomovski, Ž., Sandev, T.: Fractional helmholtz and fractional wave equations with riesz-feller and generalized riemann-liouville fractional derivatives. Eur. J. Pure Appl. Math. 7(3), 312–334 (2014)MathSciNetMATH
31.
go back to reference Secer, A.: Approximate analytic solution of fractional heat-like and wave-like equations with variable coefficients using the differential transforms method. Adv. Differ. Equ. 2012(1), 1–10 (2012)MathSciNetMATHCrossRef Secer, A.: Approximate analytic solution of fractional heat-like and wave-like equations with variable coefficients using the differential transforms method. Adv. Differ. Equ. 2012(1), 1–10 (2012)MathSciNetMATHCrossRef
32.
go back to reference Shamseldeen, S.: Approximate solution of space and time fractional higher order phase field equation. Phys. A Stat. Mech. Appl. 494, 308–316 (2018)MathSciNetCrossRef Shamseldeen, S.: Approximate solution of space and time fractional higher order phase field equation. Phys. A Stat. Mech. Appl. 494, 308–316 (2018)MathSciNetCrossRef
33.
go back to reference Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A Stat. Mech. Appl. 388(21), 4586–4592 (2009)CrossRef Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A Stat. Mech. Appl. 388(21), 4586–4592 (2009)CrossRef
34.
go back to reference Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200–218 (2010)MathSciNetMATHCrossRef Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200–218 (2010)MathSciNetMATHCrossRef
Metadata
Title
Caputo–Riesz-Feller fractional wave equation: analytic and approximate solutions and their continuation
Authors
S. Shamseldeen
A. Elsaid
S. Madkour
Publication date
05-05-2018
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2019
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-018-1186-8

Other articles of this Issue 1-2/2019

Journal of Applied Mathematics and Computing 1-2/2019 Go to the issue

Premium Partner