Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2020

23-06-2020

Carbide Evolution in High-Carbon Martensitic Stainless Cutlery Steels during Austenitizing

Authors: Yudan Yang, Hongshan Zhao, Han Dong

Published in: Journal of Materials Engineering and Performance | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The carbide phase is critical in high-carbon martensitic stainless steels (HCMSS) used for cutlery. In this study, carbide evolution during the austenitizing of different HCMSS (5Cr15MoV, 7Cr17MoV, 9Cr14MoV, and 9Cr18MoV) and its effect on the microstructure and mechanical properties are investigated. The statistical analysis of carbides suggests that the dissolution of small-sized secondary carbides (< 0.5 μm) improves the hardness. The improvement in toughness is related to the increase in the volume fraction of the retained austenite determined by the dissolution of the larger secondary carbides (> 0.5 μm). Due to the influence of the elemental diffusion distance, the interfacial energy, and directional dissolution, small-sized carbides are more soluble than large-size carbides, which can be determined by the change of the ratio of Cr/Fe (wt.%) of carbides.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.M. Cobb, The History of Stainless Steel, ASM International, Cleveland, 2010 H.M. Cobb, The History of Stainless Steel, ASM International, Cleveland, 2010
2.
go back to reference K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng., A, 2009, 65(4–6), p 39–104CrossRef K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng., A, 2009, 65(4–6), p 39–104CrossRef
3.
go back to reference Q. Bin, M. Yongzhu, and J. Laizhu, Research on the Heat Treatment of Tool Steel 5Cr15MoV, Baosteel Tech. Res., 2011, 5(3), p 51 Q. Bin, M. Yongzhu, and J. Laizhu, Research on the Heat Treatment of Tool Steel 5Cr15MoV, Baosteel Tech. Res., 2011, 5(3), p 51
4.
go back to reference G.D. Andres, Caruana, and F.L. Alvarez, Control of M23C6 Carbides in 0.45C-13Cr Martensitic Stainless Steel by Means of Three Representative Heat Treatment Parameters, Mater. Sci. Eng., A, 1998, 241(1–2), p 211–215CrossRef G.D. Andres, Caruana, and F.L. Alvarez, Control of M23C6 Carbides in 0.45C-13Cr Martensitic Stainless Steel by Means of Three Representative Heat Treatment Parameters, Mater. Sci. Eng., A, 1998, 241(1–2), p 211–215CrossRef
5.
go back to reference J. Li, C. Zhang, B. Jiang, L. Zhou, and Y. Liu, Effect of Large-Size M 23 C 6-Type Carbides on the Low-Temperature Toughness of Martensitic Heat-Resistant Steels, J. Alloy. Compd., 2016, 685, p 248–257CrossRef J. Li, C. Zhang, B. Jiang, L. Zhou, and Y. Liu, Effect of Large-Size M 23 C 6-Type Carbides on the Low-Temperature Toughness of Martensitic Heat-Resistant Steels, J. Alloy. Compd., 2016, 685, p 248–257CrossRef
6.
go back to reference Q.-T. Zhu, J. Li, C.-B. Shi, and W.-T. Yu, Effect of Quenching Process on the Microstructure and Hardness of High-Carbon Martensitic Stainless Steel, J. Mater. Eng. Perform., 2015, 24(11), p 4313–4321CrossRef Q.-T. Zhu, J. Li, C.-B. Shi, and W.-T. Yu, Effect of Quenching Process on the Microstructure and Hardness of High-Carbon Martensitic Stainless Steel, J. Mater. Eng. Perform., 2015, 24(11), p 4313–4321CrossRef
7.
go back to reference J. Karltun, K. Vogel, M. Bergstrand, and J. Eklund, Maintaining Knife Sharpness in Industrial Meat Cutting: A Matter of Knife or Meat Cutter Ability, Appl. Ergon., 2016, 56, p 92–100CrossRef J. Karltun, K. Vogel, M. Bergstrand, and J. Eklund, Maintaining Knife Sharpness in Industrial Meat Cutting: A Matter of Knife or Meat Cutter Ability, Appl. Ergon., 2016, 56, p 92–100CrossRef
8.
go back to reference J. Marsot, L. Claudon, and M. Jacqmin, Assessment of Knife Sharpness by Means of a Cutting Force Measuring System, Appl. Ergon., 2007, 38(1), p 83–89CrossRef J. Marsot, L. Claudon, and M. Jacqmin, Assessment of Knife Sharpness by Means of a Cutting Force Measuring System, Appl. Ergon., 2007, 38(1), p 83–89CrossRef
9.
go back to reference L.D. Barlow and M. Du Toit, Effect of Austenitizing Heat Treatment on the Microstructure and Hardness of Martensitic Stainless Steel AISI, 420, J. Mater. Eng. Perform., 2011, 21(7), p 1327–1336CrossRef L.D. Barlow and M. Du Toit, Effect of Austenitizing Heat Treatment on the Microstructure and Hardness of Martensitic Stainless Steel AISI, 420, J. Mater. Eng. Perform., 2011, 21(7), p 1327–1336CrossRef
10.
go back to reference X.F. Zhou, F. Fang, J.Q. Jiang, W.L. Zhu, and H.X. Xu, Refining Carbide Dimensions in AISI, M2 High Speed Steel by Increasing Solidification Rates and Spheroidising Heat Treatment, Mater. Sci. Technol., 2014, 30(1), p 116–122CrossRef X.F. Zhou, F. Fang, J.Q. Jiang, W.L. Zhu, and H.X. Xu, Refining Carbide Dimensions in AISI, M2 High Speed Steel by Increasing Solidification Rates and Spheroidising Heat Treatment, Mater. Sci. Technol., 2014, 30(1), p 116–122CrossRef
11.
go back to reference K. Srivatsa, P. Srinivas, G. Balachandran, V. Balasubramanian, Improvement of impact toughness by modified hot working and heat treatment in 13%Cr martensitic stainless steel, Mater. Sci. Eng.:A, 2016, 677, p 240-251 K. Srivatsa, P. Srinivas, G. Balachandran, V. Balasubramanian, Improvement of impact toughness by modified hot working and heat treatment in 13%Cr martensitic stainless steel, Mater. Sci. Eng.:A, 2016, 677, p 240-251
12.
go back to reference S.K. Bonagani, V. Bathula, and V. Kain, Influence of Tempering Treatment on Microstructure and Pitting Corrosion of 13 wt.% Cr Martensitic Stainless Steel, Corros. Sci., 2018, 131, p 340–354CrossRef S.K. Bonagani, V. Bathula, and V. Kain, Influence of Tempering Treatment on Microstructure and Pitting Corrosion of 13 wt.% Cr Martensitic Stainless Steel, Corros. Sci., 2018, 131, p 340–354CrossRef
13.
go back to reference A. Dalmau, C. Richard, and A. Igual-Muñoz, Degradation Mechanisms in Martensitic Stainless Steels: Wear, Corrosion and Tribocorrosion Appraisal, Tribol. Int., 2018, 121, p 167–179CrossRef A. Dalmau, C. Richard, and A. Igual-Muñoz, Degradation Mechanisms in Martensitic Stainless Steels: Wear, Corrosion and Tribocorrosion Appraisal, Tribol. Int., 2018, 121, p 167–179CrossRef
14.
go back to reference M.A. Neri and R. Colás, Analysis of a Martensitic Stainless Steel that Failed Due to the Presence of Coarse Carbides, Mater. Charact., 2001, 47(3), p 283–289CrossRef M.A. Neri and R. Colás, Analysis of a Martensitic Stainless Steel that Failed Due to the Presence of Coarse Carbides, Mater. Charact., 2001, 47(3), p 283–289CrossRef
15.
go back to reference J.D. Verhoeven, A.H. Pendray, and H.F. Clark, Wear Tests of Steel Knife Blades, Wear, 2008, 265(7), p 1093–1099CrossRef J.D. Verhoeven, A.H. Pendray, and H.F. Clark, Wear Tests of Steel Knife Blades, Wear, 2008, 265(7), p 1093–1099CrossRef
16.
go back to reference T. Tsuchiyama, Y. Ono, and S. Takaki, Microstructure Control for Toughening a High Carbon Martensitic Stainless Steel, ISIJ Int., 2000, 40(Suppl), p S184–S188CrossRef T. Tsuchiyama, Y. Ono, and S. Takaki, Microstructure Control for Toughening a High Carbon Martensitic Stainless Steel, ISIJ Int., 2000, 40(Suppl), p S184–S188CrossRef
17.
go back to reference F. Vodopivec, J. Vojvodič-Tuma, B. Šuštaršič, R. Celin, and M. Jenko, Dependence of Accelerated Creep Rate on Carbide Particle Distribution in Martensite for 0·18C-11·5Cr-0·29 V Steel, Mater. Sci. Technol., 2011, 27(5), p 937–942CrossRef F. Vodopivec, J. Vojvodič-Tuma, B. Šuštaršič, R. Celin, and M. Jenko, Dependence of Accelerated Creep Rate on Carbide Particle Distribution in Martensite for 0·18C-11·5Cr-0·29 V Steel, Mater. Sci. Technol., 2011, 27(5), p 937–942CrossRef
18.
go back to reference Z. Hongliang, H. Xunzeng, and Y. Yitao, Effect of Spheroidizing Annealing Process on Carbide Spheroidization of 55 MnB Steel, Heat Treat. Metals, 2015, 40(2), p 135–139 Z. Hongliang, H. Xunzeng, and Y. Yitao, Effect of Spheroidizing Annealing Process on Carbide Spheroidization of 55 MnB Steel, Heat Treat. Metals, 2015, 40(2), p 135–139
19.
go back to reference W.T. Yu, J. Li, C.B. Shi, and Q.T. Zhu, Effect of Spheroidizing Annealing on Microstructure and Mechanical Properties of High-Carbon Martensitic Stainless Steel 8Cr13MoV, J. Mater. Eng. Perform., 2016, 26(2), p 1–10 W.T. Yu, J. Li, C.B. Shi, and Q.T. Zhu, Effect of Spheroidizing Annealing on Microstructure and Mechanical Properties of High-Carbon Martensitic Stainless Steel 8Cr13MoV, J. Mater. Eng. Perform., 2016, 26(2), p 1–10
20.
go back to reference A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, and A. Borgenstam, Effect of Carbon Content on Variant Pairing of Martensite in Fe-C Alloys, Acta Mater., 2012, 60(20), p 7265–7274CrossRef A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, and A. Borgenstam, Effect of Carbon Content on Variant Pairing of Martensite in Fe-C Alloys, Acta Mater., 2012, 60(20), p 7265–7274CrossRef
21.
go back to reference Z. Zhang, Y. Liu, K. Zhang, J.-J. Sun, Q. Xia, and L.-H. Gao, Apparent Morphology and Structure of Martensite in Ultrahigh Carbon Steel, Trans. Mater. Heat Treat., 2010, 31(9), p 33–36 Z. Zhang, Y. Liu, K. Zhang, J.-J. Sun, Q. Xia, and L.-H. Gao, Apparent Morphology and Structure of Martensite in Ultrahigh Carbon Steel, Trans. Mater. Heat Treat., 2010, 31(9), p 33–36
22.
go back to reference M. Dangshen, H. Chi, Z. Jian, and Q. Yong, Microstructure and Mechanical Properties of Martensitic Stainless Steel 6Crl5MoV, J. Iron. Steel Res. Int., 2012, 19(3), p 56–61CrossRef M. Dangshen, H. Chi, Z. Jian, and Q. Yong, Microstructure and Mechanical Properties of Martensitic Stainless Steel 6Crl5MoV, J. Iron. Steel Res. Int., 2012, 19(3), p 56–61CrossRef
23.
go back to reference G.F.D. Silva, S.S.M. Tavares, M.R. Silva, and H.F.G.D. Abreu, Influence of Heat Treatments on Toughness and Sensitization of a Ti-Alloyed Supermartensitic Stainless Steel, J. Mater. Sci., 2011, 46(24), p 7737–7744CrossRef G.F.D. Silva, S.S.M. Tavares, M.R. Silva, and H.F.G.D. Abreu, Influence of Heat Treatments on Toughness and Sensitization of a Ti-Alloyed Supermartensitic Stainless Steel, J. Mater. Sci., 2011, 46(24), p 7737–7744CrossRef
24.
go back to reference H. Fu, Y. Qu, J. Xing, X. Zhi, Z. Jiang, M. Li, and Y. Zhang, Investigations on Heat Treatment of a High-Speed Steel Roll, J. Mater. Eng. Perform., 2008, 17(4), p 535–542CrossRef H. Fu, Y. Qu, J. Xing, X. Zhi, Z. Jiang, M. Li, and Y. Zhang, Investigations on Heat Treatment of a High-Speed Steel Roll, J. Mater. Eng. Perform., 2008, 17(4), p 535–542CrossRef
25.
go back to reference W. Song, P.-P. Choi, G. Inden, U. Prahl, D. Raabe, and W. Bleck, On the Spheroidized Carbide Dissolution and Elemental Partitioning in High Carbon Bearing Steel 100Cr6, Metall. Mater. Trans. A, 2013, 45(2), p 595–606CrossRef W. Song, P.-P. Choi, G. Inden, U. Prahl, D. Raabe, and W. Bleck, On the Spheroidized Carbide Dissolution and Elemental Partitioning in High Carbon Bearing Steel 100Cr6, Metall. Mater. Trans. A, 2013, 45(2), p 595–606CrossRef
26.
go back to reference H.B. Aaron and G.R. Kotler, Second Phase Dissolution, Metall. Trans., 1971, 2(2), p 393–408CrossRef H.B. Aaron and G.R. Kotler, Second Phase Dissolution, Metall. Trans., 1971, 2(2), p 393–408CrossRef
27.
go back to reference Z.-K. Liu, L. Höglund, and B. Jönsson, An Experimental and Theoretical Study of Cementite Dissolution in an Fe-Cr-C Alloy, Metall. Trans. A, 1991, 22(8), p 1745–1752CrossRef Z.-K. Liu, L. Höglund, and B. Jönsson, An Experimental and Theoretical Study of Cementite Dissolution in an Fe-Cr-C Alloy, Metall. Trans. A, 1991, 22(8), p 1745–1752CrossRef
28.
go back to reference S.B. Hosseini, R. Dahlgren, K. Ryttberg, and U. Klement, Dissolution of Iron-chromium Carbides during White Layer Formation Induced by Hard Turning of AISI, 52100 Steel, Proc. CIRP, 2014, 14, p 107–112CrossRef S.B. Hosseini, R. Dahlgren, K. Ryttberg, and U. Klement, Dissolution of Iron-chromium Carbides during White Layer Formation Induced by Hard Turning of AISI, 52100 Steel, Proc. CIRP, 2014, 14, p 107–112CrossRef
29.
go back to reference J.H. Kang and P.E.J. Rivera-Díaz-del-Castillo, Carbide Dissolution in Bearing Steels, Comput. Mater. Sci., 2013, 67, p 364–372CrossRef J.H. Kang and P.E.J. Rivera-Díaz-del-Castillo, Carbide Dissolution in Bearing Steels, Comput. Mater. Sci., 2013, 67, p 364–372CrossRef
30.
go back to reference J. Bratberg, J. Ãgren, and K. Frisk, Diffusion Simulations of MC and M7C3 Carbide Coarsening in bcc and fcc Matrix Utilising New Thermodynamic and Kinetic Description, Mater. Sci. Technol., 2008, 24(6), p 695–704CrossRef J. Bratberg, J. Ãgren, and K. Frisk, Diffusion Simulations of MC and M7C3 Carbide Coarsening in bcc and fcc Matrix Utilising New Thermodynamic and Kinetic Description, Mater. Sci. Technol., 2008, 24(6), p 695–704CrossRef
Metadata
Title
Carbide Evolution in High-Carbon Martensitic Stainless Cutlery Steels during Austenitizing
Authors
Yudan Yang
Hongshan Zhao
Han Dong
Publication date
23-06-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04912-9

Other articles of this Issue 6/2020

Journal of Materials Engineering and Performance 6/2020 Go to the issue

Premium Partners