Skip to main content
Top

2014 | OriginalPaper | Chapter

7. Carbon Capture and Storage: In the Quest for Clean Fossil Energy

Author : Nazim Muradov

Published in: Liberating Energy from Carbon: Introduction to Decarbonization

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main objective of carbon capture and storage (CCS) is to prevent CO2 from entering the atmosphere by capturing CO2 from large industrial sources and securely storing it in various carbon sinks. CCS is considered a critical component of the portfolio of carbon mitigation solutions, because global economy heavily relies and will continue to rely on fossil fuels in the foreseeable future. Currently, there are close to 300 active and planned CCS-related projects around the world—an indication of a growing commitment to this technological option. However, despite significant progress in CCS technology, the pace of CCS commercial deployment is rather slow. The major challenges facing the large-scale CCS deployment worldwide relate to a very high financial barrier and limited economic stimuli or regulatory drivers to encourage investments in the technology. This chapter highlights scientific and engineering progress in all three major stages of the CCS chain, CO2 capture, transport, and storage, and the current status of existing and planned commercial CCS projects. Technological, economic, environmental, and societal aspects of the large-scale CCS deployment and its prospects as a major carbon abatement policy are analyzed in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
New Entrants Reserve (NER300) is one of the world’s largest funding programs for innovative low-carbon energy demonstration projects as part of the EU Emission Trading System.
 
Literature
1.
go back to reference Global CCS Institute (2009) Strategic analysis of the global status of carbon capture and storage. Final report. http://www/globalccsinstitute.com/downloads/reports/2009/worley/foundation-report-1-rev0.pdf. Accessed 3 Aug 2010 Global CCS Institute (2009) Strategic analysis of the global status of carbon capture and storage. Final report. http://​www/​globalccsinstitu​te.​com/​downloads/​reports/​2009/​worley/​foundation-report-1-rev0.​pdf.​ Accessed 3 Aug 2010
2.
go back to reference Outcomes from UNFCCC conference in Doha (2013) Carbon Capture J 32 Outcomes from UNFCCC conference in Doha (2013) Carbon Capture J 32
3.
go back to reference Global CCS Institute (2013) Status of carbon capture and storage update. Carbon Capture J 32 Global CCS Institute (2013) Status of carbon capture and storage update. Carbon Capture J 32
4.
go back to reference International Energy Agency (2012) Energy technology perspectives. Pathways to a clean energy system. IEA/OECD, Paris, France International Energy Agency (2012) Energy technology perspectives. Pathways to a clean energy system. IEA/OECD, Paris, France
5.
go back to reference Jacobson M (2009) Review of solutions to global warming, air pollution and energy security. Energy Environ Sci 2:148–173CrossRef Jacobson M (2009) Review of solutions to global warming, air pollution and energy security. Energy Environ Sci 2:148–173CrossRef
6.
go back to reference Quaile I, Gräßler B (2011) Deutsche Welle. http//www.dw-world.de/dw/article/0,15402725,00.html. Accessed 10 Dec 2011 Quaile I, Gräßler B (2011) Deutsche Welle. http//www.dw-world.de/dw/article/0,15402725,00.html. Accessed 10 Dec 2011
12.
go back to reference Global CCS Institute (2011) The global status of CCS: 2011 update. Canberra, Australia, ISBN 978-0-9871863-0-0 Global CCS Institute (2011) The global status of CCS: 2011 update. Canberra, Australia, ISBN 978-0-9871863-0-0
13.
go back to reference He H, Li W, Zhong M et al (2013) Reversible CO2 capture with porous polymers using the humidity swing. Energy Environ Sci 6:488–493 He H, Li W, Zhong M et al (2013) Reversible CO2 capture with porous polymers using the humidity swing. Energy Environ Sci 6:488–493
14.
go back to reference US Department of Energy (2007) Carbon sequestration technology. Roadmap, Washington, DC US Department of Energy (2007) Carbon sequestration technology. Roadmap, Washington, DC
15.
16.
go back to reference Ciferno J, Fout T, Jones A et al. (2009) Capturing carbon from existing coal-fired power plants. Chem Eng Progress:33–47 Ciferno J, Fout T, Jones A et al. (2009) Capturing carbon from existing coal-fired power plants. Chem Eng Progress:33–47
17.
go back to reference US Department of Energy (2003) Carbon sequestration. Technology roadmap and program plan. US DOE Office of Fossil Energy, National Energy Technology Laboratory, Morgantown, West Virginia US Department of Energy (2003) Carbon sequestration. Technology roadmap and program plan. US DOE Office of Fossil Energy, National Energy Technology Laboratory, Morgantown, West Virginia
18.
go back to reference Millward A, Yaghi O (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999CrossRef Millward A, Yaghi O (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999CrossRef
19.
go back to reference Carbon sponge could soak up coal emissions (2013) Carbon Capture J 32:21 Carbon sponge could soak up coal emissions (2013) Carbon Capture J 32:21
21.
go back to reference Lin H, Merkel T, Baker R (2007) The membrane solution to global warming. 6th annual conference on carbon capture and sequestration, Pittsburgh, PA Lin H, Merkel T, Baker R (2007) The membrane solution to global warming. 6th annual conference on carbon capture and sequestration, Pittsburgh, PA
22.
go back to reference Du N, Park H, Robertson G et al (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10:372–375CrossRef Du N, Park H, Robertson G et al (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10:372–375CrossRef
23.
go back to reference US Department of Energy (2006) Carbon Sequestration Technology Roadmap. Office of Fossil Energy, NETL, Morgantown, West Virginia US Department of Energy (2006) Carbon Sequestration Technology Roadmap. Office of Fossil Energy, NETL, Morgantown, West Virginia
24.
go back to reference US Department of Energy (2005) Roadmap for the hydrogen economy. Workshop on manufacturing R&D for the hydrogen economy, Washington, DC US Department of Energy (2005) Roadmap for the hydrogen economy. Workshop on manufacturing R&D for the hydrogen economy, Washington, DC
25.
go back to reference Intergovernmental Panel on Climate Change (2005) IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. In: Metz B, Davidson O, de Coninck H et al (eds). Cambridge University Press, Cambridge Intergovernmental Panel on Climate Change (2005) IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. In: Metz B, Davidson O, de Coninck H et al (eds). Cambridge University Press, Cambridge
26.
go back to reference International Energy Agency (1996) Decarbonization of fossil fuels, IEA Report PH2/2, March 1996, IEA Greenhouse Gas R&D Programme, Cheltenham International Energy Agency (1996) Decarbonization of fossil fuels, IEA Report PH2/2, March 1996, IEA Greenhouse Gas R&D Programme, Cheltenham
27.
go back to reference Muradov N (2009) Production of hydrogen from hydrocarbons. In: Gupta R (ed) Hydrogen fuel. Production, transport and storage. CRC Press, Boca Raton Muradov N (2009) Production of hydrogen from hydrocarbons. In: Gupta R (ed) Hydrogen fuel. Production, transport and storage. CRC Press, Boca Raton
28.
go back to reference Wilson E, Gerard D (2007) Carbon capture and sequestration. Integrating technology, monitoring and regulation. Blackwell Publishing, Ames, IA Wilson E, Gerard D (2007) Carbon capture and sequestration. Integrating technology, monitoring and regulation. Blackwell Publishing, Ames, IA
29.
go back to reference Ball M, Weindorf W, Bunger U (2009) Hydrogen production. In: Ball M, Wietschel M (eds) Hydrogen economy. Opportunities and challenges. Cambridge University Press, Cambridge, UKCrossRef Ball M, Weindorf W, Bunger U (2009) Hydrogen production. In: Ball M, Wietschel M (eds) Hydrogen economy. Opportunities and challenges. Cambridge University Press, Cambridge, UKCrossRef
30.
go back to reference Lin S (2009) Hydrogen production from coal. In: Gupta R (ed) Hydrogen fuel. Production, transport and storage. CRC Press, Boca Raton Lin S (2009) Hydrogen production from coal. In: Gupta R (ed) Hydrogen fuel. Production, transport and storage. CRC Press, Boca Raton
36.
go back to reference Stern M, Simeon F, Herzog H et al (2013) Post-combustion carbon-dioxide capture using electrochemically mediated amine regeneration. Energy Environ Sci. doi:10.1039/c3ee41165f Stern M, Simeon F, Herzog H et al (2013) Post-combustion carbon-dioxide capture using electrochemically mediated amine regeneration. Energy Environ Sci. doi:10.​1039/​c3ee41165f
38.
go back to reference Brennecke J, Gurkan B (2010) Ionic liquids for CO2 capture and emission reduction. J Phys Chem Lett 2010:3459–3464CrossRef Brennecke J, Gurkan B (2010) Ionic liquids for CO2 capture and emission reduction. J Phys Chem Lett 2010:3459–3464CrossRef
39.
go back to reference Ritter S (2010) Carbon dioxide’s unsettled future. Chem Eng News 88:36–37 Ritter S (2010) Carbon dioxide’s unsettled future. Chem Eng News 88:36–37
40.
go back to reference Trachtenberg M, Cowan R, Smith D et al (2008). Membrane-based enzyme-facilitated efficient CO2 capture. Proceedings of the 9th international conference on Greenhouse Gas Control Technologies, Washington, DC, p 353–360 Trachtenberg M, Cowan R, Smith D et al (2008). Membrane-based enzyme-facilitated efficient CO2 capture. Proceedings of the 9th international conference on Greenhouse Gas Control Technologies, Washington, DC, p 353–360
41.
go back to reference Tuinier M, Hamers H, van Sing Annaland M (2011) Techno-economic evaluation of cryogenic CO2 capture—a comparison with absorption and membrane technology. Int J Greenhouse Gas Control 5:1559–1565CrossRef Tuinier M, Hamers H, van Sing Annaland M (2011) Techno-economic evaluation of cryogenic CO2 capture—a comparison with absorption and membrane technology. Int J Greenhouse Gas Control 5:1559–1565CrossRef
44.
go back to reference Zafar Q, Mattisson T, Gevert B (2005) Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO and Fe2O3 using SiO2 as a support. Ind Eng Chem Res 44:3485–3496CrossRef Zafar Q, Mattisson T, Gevert B (2005) Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO and Fe2O3 using SiO2 as a support. Ind Eng Chem Res 44:3485–3496CrossRef
45.
go back to reference McGlashan N (2008) Chemical looping combustion—a thermodynamic study. J Mech Eng Sci 222:1005–1019CrossRef McGlashan N (2008) Chemical looping combustion—a thermodynamic study. J Mech Eng Sci 222:1005–1019CrossRef
46.
go back to reference Brandvoll O, Bolland O (2004) Inherent CO2 capture using chemical looping combustion in a natural gas fired power cycle. ASME J Eng Gas Turb Power 126:316–321. ASME Paper GT-2002–30129 Brandvoll O, Bolland O (2004) Inherent CO2 capture using chemical looping combustion in a natural gas fired power cycle. ASME J Eng Gas Turb Power 126:316–321. ASME Paper GT-2002–30129
47.
go back to reference Naqvi R, Bolland O (2007) Multi-stage chemical looping combustion (CLC) for combined cycles with CO2 capture. Int J Greenhouse Gas Control 1:19–30CrossRef Naqvi R, Bolland O (2007) Multi-stage chemical looping combustion (CLC) for combined cycles with CO2 capture. Int J Greenhouse Gas Control 1:19–30CrossRef
48.
go back to reference Habib M, Badr H, Ahmed S et al (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35:741–764CrossRef Habib M, Badr H, Ahmed S et al (2011) A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. Int J Energy Res 35:741–764CrossRef
49.
go back to reference Mattisson T (2007) Chemical-looping combustion using gaseous and solid fuels. 2nd Workshop on international oxy-combustion research network, 25–26 Jan 2007, Windsor, CT Mattisson T (2007) Chemical-looping combustion using gaseous and solid fuels. 2nd Workshop on international oxy-combustion research network, 25–26 Jan 2007, Windsor, CT
50.
go back to reference Tan X, Wang Z, Lin H et al (2008) Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fibre membranes by surface modifications. J Membr Sci 324:128–135CrossRef Tan X, Wang Z, Lin H et al (2008) Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fibre membranes by surface modifications. J Membr Sci 324:128–135CrossRef
51.
go back to reference Park J, Do Par S (2007) Oxygen permeability and structural stability of La0.6Sr0.4Co0.2Fe0.8O3-δ membrane. Korean J Chem Eng 24:897–905CrossRef Park J, Do Par S (2007) Oxygen permeability and structural stability of La0.6Sr0.4Co0.2Fe0.8O3-δ membrane. Korean J Chem Eng 24:897–905CrossRef
52.
go back to reference Esquiro A, Brandon N, Kilner J et al (2004) Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for intermediate temperature SOFC. J Electrochem Soc 151:A1847–A1855CrossRef Esquiro A, Brandon N, Kilner J et al (2004) Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for intermediate temperature SOFC. J Electrochem Soc 151:A1847–A1855CrossRef
53.
go back to reference Wang H, Cong Y, Yang W (2002) Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable membrane. J Membr Sci 210:259–271CrossRef Wang H, Cong Y, Yang W (2002) Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable membrane. J Membr Sci 210:259–271CrossRef
54.
go back to reference Zhu X, Cong Y, Yang W (2006) Effects of synthesis methods on oxygen permeability of BaCe0.15Fe0.85O3-δ ceramic membranes. J Membr Sci 283:158–163CrossRef Zhu X, Cong Y, Yang W (2006) Effects of synthesis methods on oxygen permeability of BaCe0.15Fe0.85O3-δ ceramic membranes. J Membr Sci 283:158–163CrossRef
55.
go back to reference Arnold M, Wang H, Feldhoff A (2007) Influence of CO2 on the oxygen permeation performance and microstructure of perovskite type (Ba0.5Sr0.5) (Co0.8Fe0.2)O3-δ membranes. J Membr Sci 293:44–52CrossRef Arnold M, Wang H, Feldhoff A (2007) Influence of CO2 on the oxygen permeation performance and microstructure of perovskite type (Ba0.5Sr0.5) (Co0.8Fe0.2)O3-δ membranes. J Membr Sci 293:44–52CrossRef
56.
go back to reference Yan A, Liu B, Dong Y et al (2008) A temperature programmed desorption investigation on the interaction of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite oxides with CO2 in the absence and presence of H2O and O2. Appl Catal B 80:24–31CrossRef Yan A, Liu B, Dong Y et al (2008) A temperature programmed desorption investigation on the interaction of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite oxides with CO2 in the absence and presence of H2O and O2. Appl Catal B 80:24–31CrossRef
57.
go back to reference Benson S, Waller D, Kilner J (1999) Degradation of La0.6Sr0.4Co0.2Fe0.8O3-δ in carbon dioxide and water atmospheres. J Electrochem Soc 146:1305–1309CrossRef Benson S, Waller D, Kilner J (1999) Degradation of La0.6Sr0.4Co0.2Fe0.8O3-δ in carbon dioxide and water atmospheres. J Electrochem Soc 146:1305–1309CrossRef
58.
go back to reference Efimov K, Arnold M, Martynczuk J et al (2009) Crystalline intermediate phases in the sol-gel-based synthesis of La2NiO4+δ. J Am Ceram Soc 92:876–880CrossRef Efimov K, Arnold M, Martynczuk J et al (2009) Crystalline intermediate phases in the sol-gel-based synthesis of La2NiO4+δ. J Am Ceram Soc 92:876–880CrossRef
59.
go back to reference Kvamsdal H, Jordal K, Bolland O (2007) A quantitative comparison of gas turbine cycles with CO2 capture. Energy 32:10–24CrossRef Kvamsdal H, Jordal K, Bolland O (2007) A quantitative comparison of gas turbine cycles with CO2 capture. Energy 32:10–24CrossRef
60.
go back to reference Sandquist S, Julsrud S, Vigenand B et al (2007) Development and testing of AZEP reactor components. Int J Greenhouse Gas Control 2007:180–187 Sandquist S, Julsrud S, Vigenand B et al (2007) Development and testing of AZEP reactor components. Int J Greenhouse Gas Control 2007:180–187
61.
go back to reference Sundquist S, Griffin T, Thornhaug N (2011) AZEP-development of an integrated air separation membrane-gas turbine. 2nd Nordic minisymposium on carbon dioxide capture and storage. Alstom Power, Gothenburg, Sweden, October 2011 Sundquist S, Griffin T, Thornhaug N (2011) AZEP-development of an integrated air separation membrane-gas turbine. 2nd Nordic minisymposium on carbon dioxide capture and storage. Alstom Power, Gothenburg, Sweden, October 2011
64.
go back to reference Seiersten M (2001) Material selection for separation, transportation and disposal of CO2. Proceedings of the Corrosion National Association. Corrosion Engineers, paper 1042 Seiersten M (2001) Material selection for separation, transportation and disposal of CO2. Proceedings of the Corrosion National Association. Corrosion Engineers, paper 1042
65.
go back to reference Guijt W (2004) Analyses of incident data show US, European pipelines becoming safer. Oil Gas J 102:68–73 Guijt W (2004) Analyses of incident data show US, European pipelines becoming safer. Oil Gas J 102:68–73
67.
go back to reference International Energy Agency (2004) Ship transport of CO2. IEA Greenhouse Gas R&D Programme, Report PH4/30, Cheltenham International Energy Agency (2004) Ship transport of CO2. IEA Greenhouse Gas R&D Programme, Report PH4/30, Cheltenham
68.
go back to reference Marchetti C (1977) On geoenginering and the CO2 problem. Clim Chang 1:59–68CrossRef Marchetti C (1977) On geoenginering and the CO2 problem. Clim Chang 1:59–68CrossRef
69.
go back to reference Kaarstad O (1992) Emission-free fossil energy from Norway. Energy Convers Manag 33:781–786CrossRef Kaarstad O (1992) Emission-free fossil energy from Norway. Energy Convers Manag 33:781–786CrossRef
70.
go back to reference Koide H, Tazaki Y, Noguchi Y et al (1992) Subterranean containment and long-term storage of carbon dioxide in unused aquifers and depleted natural gas reservoirs. Energy Convers Manag 33:619–626CrossRef Koide H, Tazaki Y, Noguchi Y et al (1992) Subterranean containment and long-term storage of carbon dioxide in unused aquifers and depleted natural gas reservoirs. Energy Convers Manag 33:619–626CrossRef
71.
go back to reference Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media. Environ Geol 44:277–289CrossRef Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media. Environ Geol 44:277–289CrossRef
72.
go back to reference Pershad H (2012) CCS for gas—results of Element Energy study. Carbon Capture J 13–15 Pershad H (2012) CCS for gas—results of Element Energy study. Carbon Capture J 13–15
74.
75.
go back to reference Bachu S, Gunter W, Perkins E (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manag 35:269–279CrossRef Bachu S, Gunter W, Perkins E (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manag 35:269–279CrossRef
76.
go back to reference Perkins E, Czernichowski-Lauriol I, Azaroual M et al (2004) Long term predictions of CO2 storage by mineral and solubility trapping in the Weybourn Midale Reservoir. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, vol II, Vancouver, Canada, p. 2093–2096 Perkins E, Czernichowski-Lauriol I, Azaroual M et al (2004) Long term predictions of CO2 storage by mineral and solubility trapping in the Weybourn Midale Reservoir. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, vol II, Vancouver, Canada, p. 2093–2096
77.
go back to reference Casey A (2008) Carbon cemetery. Canadian Geographic Magazine, January/February:61 Casey A (2008) Carbon cemetery. Canadian Geographic Magazine, January/February:61
79.
go back to reference Holt T, Jensen J, Lindeberg E (1995) Underground of storage of CO2 in aquifers and oil reservoirs. Energy Convers Manag 36:535–538CrossRef Holt T, Jensen J, Lindeberg E (1995) Underground of storage of CO2 in aquifers and oil reservoirs. Energy Convers Manag 36:535–538CrossRef
80.
go back to reference Ferguson R, Nichols C, van Leeuwen T et al (2009) Storing CO2 with enhanced oil recovery. Greenhouse Gas Technologies-9, Elsevier Science Direct, Energy Procedia 1: 1989–1996 Ferguson R, Nichols C, van Leeuwen T et al (2009) Storing CO2 with enhanced oil recovery. Greenhouse Gas Technologies-9, Elsevier Science Direct, Energy Procedia 1: 1989–1996
81.
go back to reference Baviere M (2007) Basic concepts in enhanced oil recovery processes. Elsevier Applied Science, London, ISBN 1-85166-617-6 Baviere M (2007) Basic concepts in enhanced oil recovery processes. Elsevier Applied Science, London, ISBN 1-85166-617-6
82.
go back to reference Stevens S, Kuuskraa J, Schraufnagel R (1996) Technology spurs growth of US coal bed methane. Oil Gas J 94:56–63 Stevens S, Kuuskraa J, Schraufnagel R (1996) Technology spurs growth of US coal bed methane. Oil Gas J 94:56–63
83.
go back to reference Key R, Kozyr A, Sabine C et al (2004) A global ocean carbon climatology: results from GLODAP. Global Biochem Cy 18:GB4031 Key R, Kozyr A, Sabine C et al (2004) A global ocean carbon climatology: results from GLODAP. Global Biochem Cy 18:GB4031
85.
go back to reference Brewer P, Peltzer E, Walz P et al (2005) Deep ocean experiments with fossil fuel carbon dioxide: creation and sensing of a controlled plume at 4 km depth. J Mar Res 63:9–33CrossRef Brewer P, Peltzer E, Walz P et al (2005) Deep ocean experiments with fossil fuel carbon dioxide: creation and sensing of a controlled plume at 4 km depth. J Mar Res 63:9–33CrossRef
86.
go back to reference Intergovernmental Panel on Climate Change (2007) IPCC 4th assessment report, climate change 2007. The physical science basis. Cambridge University Press, Cambridge Intergovernmental Panel on Climate Change (2007) IPCC 4th assessment report, climate change 2007. The physical science basis. Cambridge University Press, Cambridge
87.
go back to reference O’Connor W, Dahlin D, Rush G et al (2005) Aqueous mineral carbonation, Final Report, DOE/ARC-TR-04-002, 15 March 2005 O’Connor W, Dahlin D, Rush G et al (2005) Aqueous mineral carbonation, Final Report, DOE/ARC-TR-04-002, 15 March 2005
88.
go back to reference US Department of Energy (1999) Carbon sequestration. State of the Science. US DOE, Office of Science, Office of Fossil Fuels, Working paper on carbon sequestration science and technology. Washington, DC US Department of Energy (1999) Carbon sequestration. State of the Science. US DOE, Office of Science, Office of Fossil Fuels, Working paper on carbon sequestration science and technology. Washington, DC
89.
go back to reference Andersen R (2005) Algal culturing techniques. Elsevier, Amsterdam, pp 189–203 Andersen R (2005) Algal culturing techniques. Elsevier, Amsterdam, pp 189–203
90.
go back to reference Nakamura T (2004) Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae, Technical report to DOE, NETL, No. PSI-1356, December 2004 Nakamura T (2004) Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae, Technical report to DOE, NETL, No. PSI-1356, December 2004
91.
go back to reference National Laboratory Directors (1997) Technology opportunities to reduce US greenhouse gas emissions. Oak Ridge National Laboratory, Tennessee National Laboratory Directors (1997) Technology opportunities to reduce US greenhouse gas emissions. Oak Ridge National Laboratory, Tennessee
92.
go back to reference International Energy Agency (2004) Improvements in power generation with post- combustion capture of CO2, IEA report PH4/33. IEA Greenhouse gas R&D Programme, Cheltenham, UK International Energy Agency (2004) Improvements in power generation with post- combustion capture of CO2, IEA report PH4/33. IEA Greenhouse gas R&D Programme, Cheltenham, UK
93.
go back to reference Davison J (2005) CO2 capture and storage and the IEA Greenhouse Gas Programme. Workshop on CO2 issues, Miffelfart, Denmark, May 2005, IEA Greenhouse Gas Programme, Cheltenham Davison J (2005) CO2 capture and storage and the IEA Greenhouse Gas Programme. Workshop on CO2 issues, Miffelfart, Denmark, May 2005, IEA Greenhouse Gas Programme, Cheltenham
94.
go back to reference Power from gas + CCS at 54% efficiency? (2013) Carbon Capture J 14–15 Power from gas + CCS at 54% efficiency? (2013) Carbon Capture J 14–15
95.
go back to reference Tola V, Pettinau A (2014) Power generation plants with carbon capture and storage: a techno-economic comparison between coal combustion and gasification technologies. Appl Energy 113:1461–1474CrossRef Tola V, Pettinau A (2014) Power generation plants with carbon capture and storage: a techno-economic comparison between coal combustion and gasification technologies. Appl Energy 113:1461–1474CrossRef
97.
go back to reference Thayer A (2009) Chemicals to help coal come clean. Chem Eng News 87:18–20CrossRef Thayer A (2009) Chemicals to help coal come clean. Chem Eng News 87:18–20CrossRef
98.
go back to reference McCoy S, Rubin E (2008) An engineering economic model of pipeline transport of CO2 with application to carbon capture and storage. Int J Greenhouse Gas Control 2:219–229CrossRef McCoy S, Rubin E (2008) An engineering economic model of pipeline transport of CO2 with application to carbon capture and storage. Int J Greenhouse Gas Control 2:219–229CrossRef
100.
go back to reference Bock B, Rhudy R, Herzog H et al. (2003) Economic evaluation of CO2 storage and sink options. DOE research report, DE-FC26–00NT40937, Washington, DC Bock B, Rhudy R, Herzog H et al. (2003) Economic evaluation of CO2 storage and sink options. DOE research report, DE-FC26–00NT40937, Washington, DC
101.
go back to reference Hendriks C, Graus W, van Bergen F (2002) Global carbon dioxide storage potential and costs. Report Ecofys & The Netherlands Institute of Applied Geoscience TNO, Ecofys Report EEP, p 63 Hendriks C, Graus W, van Bergen F (2002) Global carbon dioxide storage potential and costs. Report Ecofys & The Netherlands Institute of Applied Geoscience TNO, Ecofys Report EEP, p 63
103.
go back to reference Akai M, Nishio N, Iijima M et al. (2004) Performance and economic evaluation of CO2 capture and sequestration technologies. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, Elsevier, Oxford Akai M, Nishio N, Iijima M et al. (2004) Performance and economic evaluation of CO2 capture and sequestration technologies. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, Elsevier, Oxford
104.
go back to reference World Energy Investment Outlook (2003) OECD/IEA, 75775 Paris. ISBN: 92-64-01906-5 World Energy Investment Outlook (2003) OECD/IEA, 75775 Paris. ISBN: 92-64-01906-5
105.
go back to reference Edmonds J, Feund P, Dooley J (2000) The role of carbon management technologies in addressing atmospheric stabilization of greenhouse gases. Proceedings of the 5th international conference on Greenhouse Gas Control Technologies. Sponsored by the IEA Greenhouse gas R&D Programme, Cairns Edmonds J, Feund P, Dooley J (2000) The role of carbon management technologies in addressing atmospheric stabilization of greenhouse gases. Proceedings of the 5th international conference on Greenhouse Gas Control Technologies. Sponsored by the IEA Greenhouse gas R&D Programme, Cairns
108.
go back to reference Status of CCS project database (2012) Carbon Capture J:24–25 Status of CCS project database (2012) Carbon Capture J:24–25
112.
go back to reference Michael K, Allison G, Golab A (2009) CO2 storage in saline aquifers II- experience from existing storage operations. Proceedings of the greenhouse gas technologies-9 conference. Energy procedia, vol 1, p. 1973–1980 Michael K, Allison G, Golab A (2009) CO2 storage in saline aquifers II- experience from existing storage operations. Proceedings of the greenhouse gas technologies-9 conference. Energy procedia, vol 1, p. 1973–1980
114.
go back to reference Petroleum Technology Research Center (2007) Weyburn-Midale CO2 monitoring & storage project. Proceedings of the 6th annual conference on carbon capture & sequestration. Pittsburg, PA, 7 May 2007 Petroleum Technology Research Center (2007) Weyburn-Midale CO2 monitoring & storage project. Proceedings of the 6th annual conference on carbon capture & sequestration. Pittsburg, PA, 7 May 2007
115.
go back to reference Wackowski R (2007) Rangely Weber Sand unit CO2 flooding case study, a long history of CO2 injection. Proceedings of the CO2 capture and storage conference, The Canadian Institute, Calgary, AB, 7 Feb 2007 Wackowski R (2007) Rangely Weber Sand unit CO2 flooding case study, a long history of CO2 injection. Proceedings of the CO2 capture and storage conference, The Canadian Institute, Calgary, AB, 7 Feb 2007
116.
go back to reference Beckwith R (2011) Carbon capture and storage: a mixed review. JPT:42–45 Beckwith R (2011) Carbon capture and storage: a mixed review. JPT:42–45
117.
go back to reference Reeves S, Davis D, Oudinot A (2004) A technical and economic sensitivity study of enhanced coalbed methane recovery and carbon sequestration in coal. DOE topical report, Washington, DC Reeves S, Davis D, Oudinot A (2004) A technical and economic sensitivity study of enhanced coalbed methane recovery and carbon sequestration in coal. DOE topical report, Washington, DC
118.
go back to reference Flett M, Beacher G, Brantjes J et al (2008) Gordon Project: subsurface evaluation of carbon dioxide disposal under Barrow Island. Society of Petroleum Engineering, SPE 116372 Flett M, Beacher G, Brantjes J et al (2008) Gordon Project: subsurface evaluation of carbon dioxide disposal under Barrow Island. Society of Petroleum Engineering, SPE 116372
119.
go back to reference Johnson J (2012) Stumbling on the path to “clean coal”. Chem Eng News 90:37–39 Johnson J (2012) Stumbling on the path to “clean coal”. Chem Eng News 90:37–39
120.
go back to reference Reisch M (2011) Air products inks carbon-capture deals. Chem Eng News 89:24 Reisch M (2011) Air products inks carbon-capture deals. Chem Eng News 89:24
122.
go back to reference Worrell E, Price L, Martin N et al (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329CrossRef Worrell E, Price L, Martin N et al (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329CrossRef
126.
go back to reference Velzy C, Grillo L (2007) Waste-to-energy combustion. In: Kreith F, Goswami Y (eds) Handbook of energy efficiency and renewable energy. CRC Press, Boca Raton, USA Velzy C, Grillo L (2007) Waste-to-energy combustion. In: Kreith F, Goswami Y (eds) Handbook of energy efficiency and renewable energy. CRC Press, Boca Raton, USA
127.
go back to reference Johnson J (2011) EPA proposes easing CO2 controls. Chem Eng News 89:25 Johnson J (2011) EPA proposes easing CO2 controls. Chem Eng News 89:25
128.
go back to reference Johnson J (2009) Water and CO2 shouldn’t mix. Chem Eng News 87:32 Johnson J (2009) Water and CO2 shouldn’t mix. Chem Eng News 87:32
129.
go back to reference Carapeza M, Badalamenti B, Cavarra L et al (2003) Gas hazard assessment in a densely inhabited area of Colli Albani Volcano. J Volcanol Geothermal Res 123:81–94CrossRef Carapeza M, Badalamenti B, Cavarra L et al (2003) Gas hazard assessment in a densely inhabited area of Colli Albani Volcano. J Volcanol Geothermal Res 123:81–94CrossRef
132.
go back to reference Stone E, Lowe J, Shine K (2009) The impact of carbon capture and storage on climate. Energy Environ Sci 2:81–91CrossRef Stone E, Lowe J, Shine K (2009) The impact of carbon capture and storage on climate. Energy Environ Sci 2:81–91CrossRef
133.
go back to reference Zhou W, Stenhouse M, Arthur R et al (2005) The IEA Weybourn CO2 monitoring and storage project—modeling of long-term migration of CO2 from Weybourn. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, vol 1, Vancouver, Canada, p 721–730, Elsevier, UK Zhou W, Stenhouse M, Arthur R et al (2005) The IEA Weybourn CO2 monitoring and storage project—modeling of long-term migration of CO2 from Weybourn. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, vol 1, Vancouver, Canada, p 721–730, Elsevier, UK
134.
go back to reference National Institute for Occupational Safety and Health (1997). Washington, DC National Institute for Occupational Safety and Health (1997). Washington, DC
135.
go back to reference Palmgren C, Granger Morgan M, Bruine de Bruin W et al (2004) Initial public perception of deep geological and oceanic disposal of CO2. Environ Sci Technol 38:6441–6450CrossRef Palmgren C, Granger Morgan M, Bruine de Bruin W et al (2004) Initial public perception of deep geological and oceanic disposal of CO2. Environ Sci Technol 38:6441–6450CrossRef
136.
go back to reference Itoaka K, Saito A, Akai M (2004) Public acceptance of CO2 capture and storage technology: a survey of public opinion to explore influential factors. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, 2004, Vancouver, Canada Itoaka K, Saito A, Akai M (2004) Public acceptance of CO2 capture and storage technology: a survey of public opinion to explore influential factors. Proceedings of the 7th international conference on Greenhouse Gas Control Technologies, 2004, Vancouver, Canada
137.
go back to reference Johnson J (2010) Gasification plant funds shifted by DOE. Chem Eng News 88:34 Johnson J (2010) Gasification plant funds shifted by DOE. Chem Eng News 88:34
140.
go back to reference International Energy Agency (2011) World Energy Outlook. Are we entering a golden age of gas? IEA, Paris, France International Energy Agency (2011) World Energy Outlook. Are we entering a golden age of gas? IEA, Paris, France
142.
go back to reference Johnson J (2013) EPA tries capping power plant carbon. Chem Eng News 91:42–43 Johnson J (2013) EPA tries capping power plant carbon. Chem Eng News 91:42–43
145.
go back to reference Cook P (2012) Clean energy, climate and carbon. CSIRO Publishing, Collingwood, p 214 Cook P (2012) Clean energy, climate and carbon. CSIRO Publishing, Collingwood, p 214
146.
go back to reference Mills R (2011) Capturing carbon. The new weapon in the war against climate change. Columbia University Press, New York, p 465 Mills R (2011) Capturing carbon. The new weapon in the war against climate change. Columbia University Press, New York, p 465
147.
go back to reference Jackson F (2009) Conquering carbon. Carbon emissions, carbon markets and the consumers. New Holland, London, UK, p 256 Jackson F (2009) Conquering carbon. Carbon emissions, carbon markets and the consumers. New Holland, London, UK, p 256
Metadata
Title
Carbon Capture and Storage: In the Quest for Clean Fossil Energy
Author
Nazim Muradov
Copyright Year
2014
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-0545-4_7