Skip to main content
Top
Published in: Thermal Engineering 4/2022

01-04-2022 | RENEWABLE ENERGY SOURCES AND HYDROPOWER

Carbon Dioxide Power Systems: Research Lines at Initial Design Stages and Application Prospects in Russia

Authors: M. A. Vertkin, P. V. Egorov, S. B. Esin, S. P. Kolpakov, V. E. Mikhailov, Yu. G. Sukhorukov

Published in: Thermal Engineering | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract—

Carbon dioxide power systems (СО2-PS) are thermal power facilities in which carbon dioxide (СО2) is used as a working fluid. Given a fairly high initial temperature upstream of the turbine, their efficiency may be higher than that of steam turbine analogs. In all developed countries, intense studies aimed at development of СО2-PSs for various purposes are carried out, as a rule, with active participation of the state sector, including the development of state programs and addressed budgetary financial support, with the majority of R&D works carried out in the capacity of national laboratories and research institutes, with planning the works and monitoring their progress. Special attention is paid to solving the problem of decreasing the metal intensity and cost of heat-transfer equipment. It is shown—taking as an example a feasibility study of modifying the domestically developed 1200 MW sodium-cooled fast nuclear power facility by replacing the steam power plant by a СО2-PS—that such modification for large capacity power plants with moderate initial temperature levels results in degraded economic efficiency as a consequence of much higher metal intensity, larger overall dimensions, and cost of the heat-transfer equipment. Better economic efficiency in comparison with similar steam turbine plants can be achieved by increasing the initial temperature and decreasing the capacity of a single power unit. At the initial design stages, it is advisable to place the focus on developing a small capacity power part equipment of one standard size (with a standardized main compressor) intended for being used in СО2-PS at solar, nuclear, and thermal power facilities. The development of an experimental demonstration (ED) small-capacity СО2-PS intended for carrying out tests and experimentally perfecting the equipment and technology of its operation is a mandatory stage in the development of СО2-PSs for different capacities and purposes. For decreasing the cost of ED СО2-PS recuperators, it is necessary to construct a bench for testing the heat-transfer modules (HTMs) of which the СО2-PS recuperators will be assembled. A basic thermal cycle circuit of the bench facility that will accurately replicate the operation conditions of HTMs as part of the ED СО2-PS recuperators is developed. The tasks that have to be solved based on the experimental study results are described, and examples of the schematic diagrams of microchannel heat exchangers using which the HTMs can be made more compact are given. Detailed design documents for HTM equipment shall be developed in coordination with the development of technological documentation and plans for improving the technological preparation of manufacture at the industrial partner enterprise that will undertake the task of producing the ED СО2-PS heat-transfer equipment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference V. Dostal, M. J. Driscoll, and P. Hejziar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, MIT-ANP-TR-100 (Massachusetts Inst. of Technology, Cambridge, Mass., 2004). http://web.mit.edu/ 22.33/www/dostal.pdf V. Dostal, M. J. Driscoll, and P. Hejziar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, MIT-ANP-TR-100 (Massachusetts Inst. of Technology, Cambridge, Mass., 2004). http://​web.​mit.​edu/​ 22.33/www/dostal.pdf
3.
go back to reference M. R. Ashirmetov, “Power unit with a BN-1200 reactor plant,” Presented at Project Area “Breakthrough”: Results of Implementation of a New Technological Platform for Nuclear Power: Sci.-Pract. Conf., Obninsk, Russia, April 3–4, 2015. http://www.innov-rosatom.ru/ files/articles/bd4b9dbcf191149c7a7186d67d73bbd4.pdf M. R. Ashirmetov, “Power unit with a BN-1200 reactor plant,” Presented at Project Area “Breakthrough”: Results of Implementation of a New Technological Platform for Nuclear Power: Sci.-Pract. Conf., Obninsk, Russia, April 3–4, 2015. http://​www.​innov-rosatom.​ru/​ files/articles/bd4b9dbcf191149c7a7186d67d73bbd4.pdf
4.
go back to reference N. Alpy, L. Cachon, D. Haubensack, J. Floyd, N. Simon, L. Gicquel, G. Rodriguez, and G. Avakian, “Gas cycle testing opportunity with ASTRID, the French SFR prototype,” Presented at Supercritical CO2 Power Cycle Symp., Boulder, Co., May 24–25, 2011. http://atominfo.ru/files/atominfo/astridgas.pdf N. Alpy, L. Cachon, D. Haubensack, J. Floyd, N. Simon, L. Gicquel, G. Rodriguez, and G. Avakian, “Gas cycle testing opportunity with ASTRID, the French SFR prototype,” Presented at Supercritical CO2 Power Cycle Symp., Boulder, Co., May 24–25, 2011. http://​atominfo.​ru/​files/​atominfo/​astridgas.​pdf
5.
go back to reference Jae-Eun Cha, Tae-Ho Lee, Jae-Hyuk Eoh, Sung-Hwan Seong, Seong-O Kim, Dong-Eok Kim, Moohwan Kim, Tae-Woo Kim, and Kyun-Yul Suh, “Development of a supercritical CO2 Brayton energy conversion system coupled with a sodium cooled fast reactor,” Nucl. Eng. Technol. 41, 1025–1044 (2009). https://www.korea s-cience.or.kr/article/JAKO200908856863235.pdfCrossRef Jae-Eun Cha, Tae-Ho Lee, Jae-Hyuk Eoh, Sung-Hwan Seong, Seong-O Kim, Dong-Eok Kim, Moohwan Kim, Tae-Woo Kim, and Kyun-Yul Suh, “Development of a supercritical CO2 Brayton energy conversion system coupled with a sodium cooled fast reactor,” Nucl. Eng. Technol. 41, 1025–1044 (2009). https://​www.​korea s-cience.or.kr/article/JAKO200908856863235.pdfCrossRef
6.
go back to reference J. J. Sienicki, A. Moiseytsev, and C. D. Gerardi, Advanced Energy Conversion for Sodium-Cooled Fast Reactors, IAEA-CN245-022 (Argonne National Laboratory, Argonne, Ill., 2017). https://inis.iaea.org/collection/ NCLCollectionStore/_Public/49/085/49085801.pdf?r=1 J. J. Sienicki, A. Moiseytsev, and C. D. Gerardi, Advanced Energy Conversion for Sodium-Cooled Fast Reactors, IAEA-CN245-022 (Argonne National Laboratory, Argonne, Ill., 2017). https://​inis.​iaea.​org/​collection/​ NCLCollectionStore/_Public/49/085/49085801.pdf?r=1
7.
go back to reference C. M. Mendez, and G. Rochau, sCO 2 Brayton Cycle: Roadmap to sCO 2 Power Cycles NE Commercial Applications, Sandia Report SAND 2018-6187 (Sandia National Laboratories, 2018). https://www.osti.gov/biblio/1452896-sco2-brayton-cycle-roadmap-sco2-power-cycles-ne-commercial-applications C. M. Mendez, and G. Rochau, sCO 2 Brayton Cycle: Roadmap to sCO 2 Power Cycles NE Commercial Applications, Sandia Report SAND 2018-6187 (Sandia National Laboratories, 2018). https://​www.​osti.​gov/​biblio/​1452896-sco2-brayton-cycle-roadmap-sco2-power-cycles-ne-commercial-applications
8.
go back to reference A. Alemberti, M. L. Frogheri, S. Hermsmeyer, L. Ammirabile, V. Smirnov, M. Takahashi, C. F. Smith, Y. Wu, and I. S. Hwang, “Lead-cooled fast reactor (LFR). Risk and safety assessment. White paper,” Presented at Gen IV Int. Forum, Risk & Safety Working Group, April 2014, Revision 8. https://www.gen4.org/gif/upload/ docs/application/pdf/2016-10/rswg_gfr_white_paper_ final_2016.pdf A. Alemberti, M. L. Frogheri, S. Hermsmeyer, L. Ammirabile, V. Smirnov, M. Takahashi, C. F. Smith, Y. Wu, and I. S. Hwang, “Lead-cooled fast reactor (LFR). Risk and safety assessment. White paper,” Presented at Gen IV Int. Forum, Risk & Safety Working Group, April 2014, Revision 8. https://​www.​gen4.​org/​gif/​upload/​ docs/application/pdf/2016-10/rswg_gfr_white_paper_ final_2016.pdf
10.
go back to reference “Concentrated solar power projects. DEWA CSP Tower Project,” NREL Transforming Energy, Feb. 6 (2019). https://solarpaces.nrel.gov/dewa-csp-tower-project “Concentrated solar power projects. DEWA CSP Tower Project,” NREL Transforming Energy, Feb. 6 (2019). https://​solarpaces.​nrel.​gov/​dewa-csp-tower-project
11.
go back to reference Y. L. Moullec, “Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle,” Energy 49, 32–46 (2013).CrossRef Y. L. Moullec, “Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle,” Energy 49, 32–46 (2013).CrossRef
12.
go back to reference R. A. Bidkar, A. Mann, R. Singh, E. Sevincer, S. Cich, M. Day, C. D. Kulhanek, A. M. Thatte, A. M. Peter, D. Hofer, and J. Moore, “Conceptual designs of 50 MWe and 450 MWe supercritical CO2 turbomachinery trains for power generation from coal. Part 1: Cycle and turbine,” in Proc. 5th Int. Symp. on Supercritical CO 2 Power Cycles, San Antonio, Tex., Mar. 28–31, 2016. R. A. Bidkar, A. Mann, R. Singh, E. Sevincer, S. Cich, M. Day, C. D. Kulhanek, A. M. Thatte, A. M. Peter, D. Hofer, and J. Moore, “Conceptual designs of 50 MWe and 450 MWe supercritical CO2 turbomachinery trains for power generation from coal. Part 1: Cycle and turbine,” in Proc. 5th Int. Symp. on Supercritical CO 2 Power Cycles, San Antonio, Tex., Mar. 28–31, 2016.
13.
go back to reference R. A. Bidkar, G. Musgrove, M. Day, C. D. Kulhanek, T. Allison, A. M. Peter, D. Hofer, and J. Moore, “Conceptual designs of 50 MWe–450 MWe supercritical CO2 turbomachinery trains for power generation from coal. Part 2: Compressors,” in Proc. 5th Int. Symp. on Supercritical CO 2 Power Cycles, San Antonio, Tex., Mar. 28–31, 2016. R. A. Bidkar, G. Musgrove, M. Day, C. D. Kulhanek, T. Allison, A. M. Peter, D. Hofer, and J. Moore, “Conceptual designs of 50 MWe–450 MWe supercritical CO2 turbomachinery trains for power generation from coal. Part 2: Compressors,” in Proc. 5th Int. Symp. on Supercritical CO 2 Power Cycles, San Antonio, Tex., Mar. 28–31, 2016.
15.
go back to reference M. A. Vertkin, “Boiler and turbine carbon dioxide energy plant,” RF Patent. No. 2702206, Byull. Izobret. No. 28 (2018). M. A. Vertkin, “Boiler and turbine carbon dioxide energy plant,” RF Patent. No. 2702206, Byull. Izobret. No. 28 (2018).
16.
go back to reference M. A. Vertkin, S. B. Esin, S. P. Kolpakov, and Yu. G. Sukhorukov, “Utilization carbon dioxide energy plant for combined cycle plant,” RF Patent No. 2740614, Byull. Izobret. No. 2 (2021). M. A. Vertkin, S. B. Esin, S. P. Kolpakov, and Yu. G. Sukhorukov, “Utilization carbon dioxide energy plant for combined cycle plant,” RF Patent No. 2740614, Byull. Izobret. No. 2 (2021).
17.
go back to reference L. Chordia, E. Green, D. Li, M. Portnoff, G. Musgrove, S. Cich, C. J. Nolen, A. Costanzo, and K. Brun, “Development of modular, low-cost, high-temperature recuperators for the sCO2 power cycles (DE-FE0026273),” Presented at University Turbine Systems Research Project Review Meeting, Blacksburg, Va., Nov. 2, 2016. L. Chordia, E. Green, D. Li, M. Portnoff, G. Musgrove, S. Cich, C. J. Nolen, A. Costanzo, and K. Brun, “Development of modular, low-cost, high-temperature recuperators for the sCO2 power cycles (DE-FE0026273),” Presented at University Turbine Systems Research Project Review Meeting, Blacksburg, Va., Nov. 2, 2016.
18.
go back to reference G. O. Musgrove, S. Sullivan, D. Shiferaw, L. Chordia, M. Portnoff, C. Pittaway, J. Carrero, R. Le Pierres, E. Vollnogle, and E. Green, “Heat exchangers for supercritical CO2 power cycle applications,” in Proc. 5th Int. Symp. on Supercritical CO 2 Power Cycles, San Antonio, Tex., Mar. 28–31, 2016. G. O. Musgrove, S. Sullivan, D. Shiferaw, L. Chordia, M. Portnoff, C. Pittaway, J. Carrero, R. Le Pierres, E. Vollnogle, and E. Green, “Heat exchangers for supercritical CO2 power cycle applications,” in Proc. 5th Int. Symp. on Supercritical CO 2 Power Cycles, San Antonio, Tex., Mar. 28–31, 2016.
19.
go back to reference M. Portnoff and V. Vahdat, High Temperature, Recuperated sCO 2 Brayton Power System (U.S. Department of Energy, 2020). https://www.arpa-e.energy.gov/sites/ default/files/2020-11/07_PO_04_HITEMMP_2020_ Thar_Portnoff_Energy-Cleared_for_posting.pdf M. Portnoff and V. Vahdat, High Temperature, Recuperated sCO 2 Brayton Power System (U.S. Department of Energy, 2020). https://​www.​arpa-e.​energy.​gov/​sites/​ default/files/2020-11/07_PO_04_HITEMMP_2020_ Thar_Portnoff_Energy-Cleared_for_posting.pdf
Metadata
Title
Carbon Dioxide Power Systems: Research Lines at Initial Design Stages and Application Prospects in Russia
Authors
M. A. Vertkin
P. V. Egorov
S. B. Esin
S. P. Kolpakov
V. E. Mikhailov
Yu. G. Sukhorukov
Publication date
01-04-2022
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 4/2022
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601522040085

Other articles of this Issue 4/2022

Thermal Engineering 4/2022 Go to the issue

STEAM BOILERS, POWER-PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

A Dynamic Training Simulator for Perfecting the Processes in Steam Boiler Furnace Devices

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

The Effectiveness of Film Cooling of a Flat Surface in an Accelerated Flow with Air Injection Through Fan-Shaped Holes

Premium Partner