Skip to main content
Top
Published in: Thermal Engineering 4/2022

01-04-2022 | STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

The Effectiveness of Film Cooling of a Flat Surface in an Accelerated Flow with Air Injection Through Fan-Shaped Holes

Authors: E. Yu. Marchukov, A. V. Starodumov, A. V. Il’inkov, A. V. Shchukin, A. M. Ermakov, V. V. Takmovtsev, I. A. Popov

Published in: Thermal Engineering | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In an accelerating flow, the effectiveness of film cooling by injecting air through cylindrical holes at the initial mixing section increases in comparison with a zero-pressure-gradient flow. This is caused by a decrease in the separation of the air jets injected through the holes from the cooled wall. With distance from the injection section, the cooling effectiveness of coolant injection through cylindrical holes decreases in comparison with a zero-pressure-gradient flow. The cause is the enhancement of rotation of large-scale paired vortex structures called kidney vortices. Comparative experimental studies into the effectiveness of film cooling with air injection through fan-shaped or cylindrical holes in an accelerating flow have demonstrated that different mechanisms of interaction between the secondary and main flows exist in the entrance and main mixing sections in both cases. In the performed experiments, single-row belts of both types of holes had five holes in a row. A dimensionless complex of film-cooling effectiveness in an accelerating flow was used for a comparative analysis of the relative film-cooling effectiveness on a flat surface with injection through fan-shaped and cylindrical holes. At angles of secondary air injection into the main flow of α = 30°, 45°, and 75°, the acceleration of the main flow has a different effect on the relative value of the film-cooling effectiveness for a flat surface, \({{\bar {\bar {\eta }}}}\), with injection through fan-shaped or cylindrical holes at the best (m = 0.5) or high (m = 2.5) blowing ratio. Thus, for m = 0.5, the value of \({{\bar {\bar {\eta }}}}\) in the entrance mixing section at α = 30° is 0.3, but the cooling effectiveness is hardly affected by it when α = 45° and 75°. For m = 2.5, the values of \({{\bar {\bar {\eta }}}}\) at α = 30°, 45°, and 75° are, respectively, 1.35, 1.15, and 2.15. In the main mixing section, for m = 0.5, the value of \({{\bar {\bar {\eta }}}}\) increases (1.0, 1.15, and 1.6) when the injection angle increases; for m = 2.5, it decreases in comparison to the zero-pressure-gradient value from 1.6 at α = 30° to 0.72–0.82 at α = 45° and 75°.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. I. Bakulev, V. A. Golubev, B. A. Krylov, E. Yu. Marchukov, Yu. N. Nechaev, and I. I. Onishchik, Theory, Calculation and Design of Aircraft Engines and Energy Plants, Ed. by V. A. Sosunov and V. M. Chepkin, 3rd ed. (Mosk. Aviats. Inst., Moscow, 2003) [in Russian]. V. I. Bakulev, V. A. Golubev, B. A. Krylov, E. Yu. Marchukov, Yu. N. Nechaev, and I. I. Onishchik, Theory, Calculation and Design of Aircraft Engines and Energy Plants, Ed. by V. A. Sosunov and V. M. Chepkin, 3rd ed. (Mosk. Aviats. Inst., Moscow, 2003) [in Russian].
3.
go back to reference A. A. Khalatov, I. I. Borisov, Yu. A. Dashevskii, and S. B. Reznik, Heat Transfer and Hydrodynamics in Fields of Centrifugal Mass Forces, Vol. 10: Prospective Schemes of Film Cooling (Politekhnika, Kyiv, 2016) [in Russian]. A. A. Khalatov, I. I. Borisov, Yu. A. Dashevskii, and S. B. Reznik, Heat Transfer and Hydrodynamics in Fields of Centrifugal Mass Forces, Vol. 10: Prospective Schemes of Film Cooling (Politekhnika, Kyiv, 2016) [in Russian].
4.
go back to reference A. V. Shchukin, A. V. Il’inkov, V. V. Takmovtsev, T. A. Il’inkova, and I. I. Khabibullin, Thermal Physics of Working Processes in Cooled Blades of Gas Turbines (Kazan. Nats. Issled. Tekh. Univ.-Kazan. Aviats. Inst., Kazan, 2020) [in Russian]. A. V. Shchukin, A. V. Il’inkov, V. V. Takmovtsev, T. A. Il’inkova, and I. I. Khabibullin, Thermal Physics of Working Processes in Cooled Blades of Gas Turbines (Kazan. Nats. Issled. Tekh. Univ.-Kazan. Aviats. Inst., Kazan, 2020) [in Russian].
5.
go back to reference A. I. Leont’ev, S. V. Alekseenko, E. P. Volchkov, B. V. Dzyubenko, Yu. G. Dragunov, S. A. Isaev, A. A. Koroteev, Yu. A. Kuz’ma-Kichta, I. A. Popov, and V. I. Terekhov, Vortex Technologies for Power Engineering, Ed. by A. I. Leont’ev (Mosk. Energ. Inst., Moscow, 2017) [in Russian]. A. I. Leont’ev, S. V. Alekseenko, E. P. Volchkov, B. V. Dzyubenko, Yu. G. Dragunov, S. A. Isaev, A. A. Koroteev, Yu. A. Kuz’ma-Kichta, I. A. Popov, and V. I. Terekhov, Vortex Technologies for Power Engineering, Ed. by A. I. Leont’ev (Mosk. Energ. Inst., Moscow, 2017) [in Russian].
6.
go back to reference J. G. Kelley and T. J. Rockstroh, “Gas turbine engine component with compound cooling holes and method for making the same,” US Patent No. 5683600 (1997). http://www.pat2pdf.org/patents/pat5683600.pdf J. G. Kelley and T. J. Rockstroh, “Gas turbine engine component with compound cooling holes and method for making the same,” US Patent No. 5683600 (1997). http://​www.​pat2pdf.​org/​patents/​pat5683600.​pdf
7.
go back to reference G. Liang, “Turbine blade with leading edge cooling,” US Patent No. 8317473 (2009). http://www.pat2pdf. org/patents/pat8317473.pdf G. Liang, “Turbine blade with leading edge cooling,” US Patent No. 8317473 (2009). http://​www.​pat2pdf.​ org/patents/pat8317473.pdf
8.
go back to reference A. J. H. Teekaram, C. J. P. Forth, and T. V. Jones, “Film cooling in the presence of mainstream pressure gradients,” J. Turbomach. 113, 484–492 (1991).CrossRef A. J. H. Teekaram, C. J. P. Forth, and T. V. Jones, “Film cooling in the presence of mainstream pressure gradients,” J. Turbomach. 113, 484–492 (1991).CrossRef
9.
go back to reference B. E. Launder and J. York, “Discrete-hole cooling in the presence of free stream turbulence and strong favourable pressure gradient,” Int. J. Heat Mass Transfer 17, 1403–1409 (1974).CrossRef B. E. Launder and J. York, “Discrete-hole cooling in the presence of free stream turbulence and strong favourable pressure gradient,” Int. J. Heat Mass Transfer 17, 1403–1409 (1974).CrossRef
10.
go back to reference W. D. York and J. H. Leylek, “Numerical prediction of mainstream pressure gradient effects in film cooling,” in Proc. ASME 1999 Int. Gas Turbine and Aeroengine Congr. and Exhibition, Indianapolis, Ind., June 7–10, 1999 (American Society of Mechanical Engineers, New York, 1999), Vol. 3, paper id. 99-GT-166. http:// proceedings.asmedigitalcollection.asme.org/ W. D. York and J. H. Leylek, “Numerical prediction of mainstream pressure gradient effects in film cooling,” in Proc. ASME 1999 Int. Gas Turbine and Aeroengine Congr. and Exhibition, Indianapolis, Ind., June 7–10, 1999 (American Society of Mechanical Engineers, New York, 1999), Vol. 3, paper id. 99-GT-166. http:// proceedings.asmedigitalcollection.asme.org/
11.
go back to reference D. L. Schmidt and D. G. Bogard, “Pressure gradient effects on film cooling,” in Proc. ASME 1995 Int. Gas Turbine and Aeroengine Congr. and Expo., Houston, Tex., June 5–8, 1995 (American Society of Mechanical Engineers, New York, 1995), Vol. 4, paper id. 95-GT-018. https://www.netl.doe.gov D. L. Schmidt and D. G. Bogard, “Pressure gradient effects on film cooling,” in Proc. ASME 1995 Int. Gas Turbine and Aeroengine Congr. and Expo., Houston, Tex., June 5–8, 1995 (American Society of Mechanical Engineers, New York, 1995), Vol. 4, paper id. 95-GT-018. https://​www.​netl.​doe.​gov
12.
go back to reference J. D. A. Heidmann, “A numerical study of anti-vortex film cooling designs at high blowing ratio,” in Proc. ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, Germany, June 9–13, 2008 (American Society of Mechanical Engineers, New York, 2009), Vol. 4, paper id. GT2008-50845. https://asmedigitalcollection.asme.org/ GT/proceedings-abstract/GT2008/43147/789/ 325750 J. D. A. Heidmann, “A numerical study of anti-vortex film cooling designs at high blowing ratio,” in Proc. ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, Germany, June 9–13, 2008 (American Society of Mechanical Engineers, New York, 2009), Vol. 4, paper id. GT2008-50845. https://​asmedigitalcolle​ction.​asme.​org/​ GT/proceedings-abstract/GT2008/43147/789/ 325750
13.
go back to reference H. Li, G. Zhao, Z. Zhou, H. Wang, and R. You, “The characteristics and divergence of fan-shaped and cylindrical holes on the suction side of a turbine blade under rotating conditions,” Int. J. Heat Mass Transfer 139, 432–441 (2019).CrossRef H. Li, G. Zhao, Z. Zhou, H. Wang, and R. You, “The characteristics and divergence of fan-shaped and cylindrical holes on the suction side of a turbine blade under rotating conditions,” Int. J. Heat Mass Transfer 139, 432–441 (2019).CrossRef
14.
go back to reference Y. Huang, J.-Z. Zhang, C.-H. Wang, and X.-D. Zhu, “Multi-objective optimization of laidback fan-shaped film cooling hole on turbine vane suction,” Heat Mass Transfer 55, 1181–1194 (2019).CrossRef Y. Huang, J.-Z. Zhang, C.-H. Wang, and X.-D. Zhu, “Multi-objective optimization of laidback fan-shaped film cooling hole on turbine vane suction,” Heat Mass Transfer 55, 1181–1194 (2019).CrossRef
15.
go back to reference I. T. Shvets and E. P. Dyban, Air Cooling of Gas Turbine Parts (Naukova Dumka, Kiev, 1974) [in Russian]. I. T. Shvets and E. P. Dyban, Air Cooling of Gas Turbine Parts (Naukova Dumka, Kiev, 1974) [in Russian].
16.
go back to reference L. M. Wright and S. T. McClain, “PIV investigation of the effect of freestream turbulence intensity on film cooling from fanshaped holes,” in Proc. ASME Turbo Expo 2011: Turbine Technical Conf. and Expo., Vancouver, British Columbia, Canada, June 6–10, 2011 (American Society of Mechanical Engineers, New York, 2011), Vol. 5, pp. 493-507, paper id. GT2011-46127. L. M. Wright and S. T. McClain, “PIV investigation of the effect of freestream turbulence intensity on film cooling from fanshaped holes,” in Proc. ASME Turbo Expo 2011: Turbine Technical Conf. and Expo., Vancouver, British Columbia, Canada, June 6–10, 2011 (American Society of Mechanical Engineers, New York, 2011), Vol. 5, pp. 493-507, paper id. GT2011-46127.
17.
go back to reference V. P. Motulevich, “The method of relative correspondence and its application in the problems of heat and mass transfer,” Inzh.-Fiz. Zh. 14 (1), 8–16 (1968). V. P. Motulevich, “The method of relative correspondence and its application in the problems of heat and mass transfer,” Inzh.-Fiz. Zh. 14 (1), 8–16 (1968).
Metadata
Title
The Effectiveness of Film Cooling of a Flat Surface in an Accelerated Flow with Air Injection Through Fan-Shaped Holes
Authors
E. Yu. Marchukov
A. V. Starodumov
A. V. Il’inkov
A. V. Shchukin
A. M. Ermakov
V. V. Takmovtsev
I. A. Popov
Publication date
01-04-2022
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 4/2022
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601522040036

Other articles of this Issue 4/2022

Thermal Engineering 4/2022 Go to the issue

STEAM BOILERS, POWER-PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

A Dynamic Training Simulator for Perfecting the Processes in Steam Boiler Furnace Devices

Premium Partner