Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 9-12/2019

20-07-2019 | ORIGINAL ARTICLE

Carbon nanotube-reinforced intermetallic matrix composites: processing challenges, consolidation, and mechanical properties

Authors: Olusoji Oluremi Ayodele, Mary Ajimegoh Awotunde, Mxolisi Brendon Shongwe, Adewale Oladapo Adegbenjo, Bukola Joseph Babalola, Ayorinde Tayo Olanipekun, Peter Apata Olubambi

Published in: The International Journal of Advanced Manufacturing Technology | Issue 9-12/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Intermetallic compounds (NiAl) are potential high-temperature structure materials due to their exceptional physical and thermo-mechanical properties. NiAl offer a wide range of applications which stem from aerospace to automobile industry but their utilization is restricted owing to low ductility and fracture toughness. However, carbon nanotubes (CNTs) have been recognized to impact strength and improve mechanical properties in metal matrices because of their superior tensile strength, high aspect ratio, low density, and elastic modulus. This has contributed to advance developments of novel materials. In recent times, CNTs have been a focus of immense research due to presence of sp2 C–C bonds in their outer shells, with continuous cylindrical shape which significantly contributed to their superior characteristics. The processing methods of integrating CNTs in metal matrices as well as maintaining their structural integrity through the powder metallurgy routes are reviewed. The mechanical properties, microstructure evolutions, effect of CNT addition, and sintering mechanism are also articulated in this review.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Munir KS, Kingshott P, Wen C (2015) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—a review. Crit Rev Solid State Mater Sci 40(1):38–55 Munir KS, Kingshott P, Wen C (2015) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—a review. Crit Rev Solid State Mater Sci 40(1):38–55
2.
go back to reference Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites - a review. Int Mater Rev 55(1):41–64 Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites - a review. Int Mater Rev 55(1):41–64
3.
go back to reference Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52(14):8618–8629 Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52(14):8618–8629
4.
go back to reference Falodun OE, Obadele BA, Oke SR, Okoro AM, Olubambi PA (2019) Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int J Adv Manuf Technol 102:1689–1701 Falodun OE, Obadele BA, Oke SR, Okoro AM, Olubambi PA (2019) Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int J Adv Manuf Technol 102:1689–1701
5.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58
6.
go back to reference Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Mater Sci Eng A 688:505–523 Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Mater Sci Eng A 688:505–523
7.
go back to reference Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70(16):2237–2241 Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70(16):2237–2241
8.
go back to reference Dresselhaus M, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891 Dresselhaus M, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891
9.
go back to reference Eklund P, Holden J, Jishi R (1995) Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon 33(7):959–972 Eklund P, Holden J, Jishi R (1995) Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon 33(7):959–972
10.
go back to reference Yakobson BI, Avouris P (2001) In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Mechanical properties of carbon nanotubes, in carbon nanotubes: synthesis, structure, properties, and applications. Springer Berlin Heidelberg, Berlin, pp 287–327 Yakobson BI, Avouris P (2001) In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Mechanical properties of carbon nanotubes, in carbon nanotubes: synthesis, structure, properties, and applications. Springer Berlin Heidelberg, Berlin, pp 287–327
11.
go back to reference Ebbesen TW (1996) Carbon nanotubes: preparation and properties. CRC Press, Boca Raton Ebbesen TW (1996) Carbon nanotubes: preparation and properties. CRC Press, Boca Raton
12.
go back to reference Ajayan P (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800 Ajayan P (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800
13.
go back to reference Yu M-F et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640 Yu M-F et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640
14.
go back to reference Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334(1):173–178 Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334(1):173–178
15.
go back to reference Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118 Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118
16.
go back to reference Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Phys 4(9):993–1008 Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Phys 4(9):993–1008
17.
go back to reference Sun J, Gao L, Li W (2002) Colloidal processing of carbon nanotube/alumina composites. Chem Mater 14(12):5169–5172 Sun J, Gao L, Li W (2002) Colloidal processing of carbon nanotube/alumina composites. Chem Mater 14(12):5169–5172
18.
go back to reference Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6):689–706 Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6):689–706
19.
go back to reference Yeh M-K, Tai N-H, Liu J-H (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44(1):1–9 Yeh M-K, Tai N-H, Liu J-H (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44(1):1–9
20.
go back to reference Grabke HJ (1999) Oxidation of NiAl and FeAl. Intermetallics 7(10):1153–1158 Grabke HJ (1999) Oxidation of NiAl and FeAl. Intermetallics 7(10):1153–1158
21.
go back to reference Hu W, Weirich T, Hallstedt B, Chen H, Zhong Y, Gottstein G (2006) Interface structure, chemistry and properties of NiAl composites fabricated from matrix-coated single-crystalline Al2O3 fibres (sapphire) with and without an hBN interlayer. Acta Mater 54(9):2473–2488 Hu W, Weirich T, Hallstedt B, Chen H, Zhong Y, Gottstein G (2006) Interface structure, chemistry and properties of NiAl composites fabricated from matrix-coated single-crystalline Al2O3 fibres (sapphire) with and without an hBN interlayer. Acta Mater 54(9):2473–2488
22.
go back to reference Geist D, Gammer C, Rentenberger C, Karnthaler HP (2015) Sessile dislocations by reactions in NiAl severely deformed at room temperature. J Alloys Compd 621:371–377 Geist D, Gammer C, Rentenberger C, Karnthaler HP (2015) Sessile dislocations by reactions in NiAl severely deformed at room temperature. J Alloys Compd 621:371–377
23.
go back to reference Dey G (2003) Physical metallurgy of nickel aluminides. Sadhana 28(1-2):247–262 Dey G (2003) Physical metallurgy of nickel aluminides. Sadhana 28(1-2):247–262
24.
go back to reference Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912 Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912
25.
go back to reference Munir KS, Li Y, Liang D, Qian M, Xu W, Wen C (2015) Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites. Mater Des 88:138–148 Munir KS, Li Y, Liang D, Qian M, Xu W, Wen C (2015) Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites. Mater Des 88:138–148
26.
go back to reference Obadele BA, Ige OO, Olubambi PA (2017) Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering. J Alloys Compd 710:825–830 Obadele BA, Ige OO, Olubambi PA (2017) Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering. J Alloys Compd 710:825–830
27.
go back to reference Jia H, Zhang Z, Qi Z, Liu G, Bian X (2009) Formation of nanocrystalline TiC from titanium and different carbon sources by mechanical alloying. J Alloys Compd 472(1-2):97–103 Jia H, Zhang Z, Qi Z, Liu G, Bian X (2009) Formation of nanocrystalline TiC from titanium and different carbon sources by mechanical alloying. J Alloys Compd 472(1-2):97–103
28.
go back to reference Gill P, Munroe N (2012) Study of carbon nanotubes in Cu-Cr metal matrix composites. J Mater Eng Perform 21(11):2467–2471 Gill P, Munroe N (2012) Study of carbon nanotubes in Cu-Cr metal matrix composites. J Mater Eng Perform 21(11):2467–2471
29.
go back to reference Ci L, Ryu Z, Jin-Phillipp NY, Rühle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54(20):5367–5375 Ci L, Ryu Z, Jin-Phillipp NY, Rühle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54(20):5367–5375
30.
go back to reference Piggott M (1989) The interface in carbon fibre composites. Carbon 27(5):657–662 Piggott M (1989) The interface in carbon fibre composites. Carbon 27(5):657–662
31.
go back to reference Wei S, Zhang ZH, Wang FC, Shen XB, Cai HN, Lee SK, Wang L (2013) Effect of Ti content and sintering temperature on the microstructures and mechanical properties of TiB reinforced titanium composites synthesized by SPS process. Mater Sci Eng A 560:249–255 Wei S, Zhang ZH, Wang FC, Shen XB, Cai HN, Lee SK, Wang L (2013) Effect of Ti content and sintering temperature on the microstructures and mechanical properties of TiB reinforced titanium composites synthesized by SPS process. Mater Sci Eng A 560:249–255
32.
go back to reference Talaş Ş (2018) In: Mitra R (ed) 3 - Nickel aluminides, in Intermetallic Matrix Composites. Woodhead Publishing, Sawston, pp 37–69 Talaş Ş (2018) In: Mitra R (ed) 3 - Nickel aluminides, in Intermetallic Matrix Composites. Woodhead Publishing, Sawston, pp 37–69
33.
go back to reference Foiles SM, Daw MS (2011) Application of the embedded atom method to Ni3Al. J Mater Res 2(1):5–15 Foiles SM, Daw MS (2011) Application of the embedded atom method to Ni3Al. J Mater Res 2(1):5–15
34.
go back to reference Makino Y (1998) Application of band parameters to materials design. ISIJ Int 38(9):925–934 Makino Y (1998) Application of band parameters to materials design. ISIJ Int 38(9):925–934
35.
go back to reference Robertson I, Wayman C (1984) Ni5Al3 and the nickel-aluminum binary phase diagram. Metallography 17(1):43–55 Robertson I, Wayman C (1984) Ni5Al3 and the nickel-aluminum binary phase diagram. Metallography 17(1):43–55
36.
go back to reference Okamoto H (2004) Al-Ni (aluminum-nickel). J Phase Equilib Diffus 25(4):394–394 Okamoto H (2004) Al-Ni (aluminum-nickel). J Phase Equilib Diffus 25(4):394–394
37.
go back to reference Darolia R (1991) NiAl alloys for high-temperature structural applications. JOM 43(3):44–49 Darolia R (1991) NiAl alloys for high-temperature structural applications. JOM 43(3):44–49
38.
go back to reference Frommeyer G, Rablbauer R (2008) High temperature materials based on the intermetallic compound NiAl reinforced by refractory metals for advanced energy conversion technologies. Steel Res Int 79(7):507–512 Frommeyer G, Rablbauer R (2008) High temperature materials based on the intermetallic compound NiAl reinforced by refractory metals for advanced energy conversion technologies. Steel Res Int 79(7):507–512
39.
go back to reference Schilke P, Schenectady N (2004) Advanced gas turbine materials and coatings gas turbine repair technology. Paper No. GER G, 3569 Schilke P, Schenectady N (2004) Advanced gas turbine materials and coatings gas turbine repair technology. Paper No. GER G, 3569
40.
go back to reference Vedula K, Hahn K, Boulogne B (1988) Room temperature tensile ductility in polycrystalline B2 NiAl. MRS Online Proceedings Library Archive, 133 Vedula K, Hahn K, Boulogne B (1988) Room temperature tensile ductility in polycrystalline B2 NiAl. MRS Online Proceedings Library Archive, 133
41.
go back to reference Schulson E, Barker D (1983) A brittle to ductile transition in NiAl of a critical grain size Scpt Meta 17(4): 519-522 Schulson E, Barker D (1983) A brittle to ductile transition in NiAl of a critical grain size Scpt Meta 17(4): 519-522
42.
go back to reference Sauthoff G (1989) Intermetallic phases-materials developments and prospects. Z Met 80(5):337–344 Sauthoff G (1989) Intermetallic phases-materials developments and prospects. Z Met 80(5):337–344
43.
go back to reference George E, Liu C (1990) Brittle fracture and grain boundary chemistry of microalloyed NiAl. J Mater Res 5(4):754–762 George E, Liu C (1990) Brittle fracture and grain boundary chemistry of microalloyed NiAl. J Mater Res 5(4):754–762
44.
go back to reference Bochenek K, Basista M (2015) Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog Aerosp Sci 79:136–146 Bochenek K, Basista M (2015) Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog Aerosp Sci 79:136–146
45.
go back to reference Field RD, Lahrman D, Darolia R (1991) Slip systems in< 001> oriented NiAl single crystals. Acta Metall Mater 39(12):2951–2959 Field RD, Lahrman D, Darolia R (1991) Slip systems in< 001> oriented NiAl single crystals. Acta Metall Mater 39(12):2951–2959
46.
go back to reference Bethune DS, Klang CH, De Vries MS, Gorman G, Savoy RJ, Vazquez J, Bayers R (1993) Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-LayerWalls. Nature 363:605-607 Bethune DS, Klang CH, De Vries MS, Gorman G, Savoy RJ, Vazquez J, Bayers R (1993) Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-LayerWalls. Nature 363:605-607
47.
go back to reference Saito R et al (1992) Electronic-structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206 Saito R et al (1992) Electronic-structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206
48.
go back to reference Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley, Hoboken Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley, Hoboken
49.
go back to reference Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33(1):419–501 Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33(1):419–501
50.
go back to reference Munir KS, Wen C (2016) Deterioration of the strong sp2 carbon network in carbon nanotubes during the mechanical dispersion processing—a review. Crit Rev Solid State Mater Sci 41(5):347–366 Munir KS, Wen C (2016) Deterioration of the strong sp2 carbon network in carbon nanotubes during the mechanical dispersion processing—a review. Crit Rev Solid State Mater Sci 41(5):347–366
51.
go back to reference Shi X et al (2007) Fabrication and properties of W–Cu alloy reinforced by multi-walled carbon nanotubes. Mater Sci Eng A 457(1-2):18–23 Shi X et al (2007) Fabrication and properties of W–Cu alloy reinforced by multi-walled carbon nanotubes. Mater Sci Eng A 457(1-2):18–23
52.
go back to reference Deng CF, Ma YX, Zhang P, Zhang XX, Wang DZ (2008) Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater Lett 62(15):2301–2303 Deng CF, Ma YX, Zhang P, Zhang XX, Wang DZ (2008) Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater Lett 62(15):2301–2303
53.
go back to reference Yang YL, Wang YD, Ren Y, He CS, Deng JN, Nan J, Chen JG, Zuo L (2008) Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field. Mater Lett 62(1):47–50 Yang YL, Wang YD, Ren Y, He CS, Deng JN, Nan J, Chen JG, Zuo L (2008) Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field. Mater Lett 62(1):47–50
54.
go back to reference Xu CL, Wei BQ, Ma RZ, Liang J, Ma XK, Wu DH (1999) Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon 37(5):855–858 Xu CL, Wei BQ, Ma RZ, Liang J, Ma XK, Wu DH (1999) Fabrication of aluminum–carbon nanotube composites and their electrical properties. Carbon 37(5):855–858
55.
go back to reference Feng Y, Yuan HL, Zhang M (2005) Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact 55(3):211–218 Feng Y, Yuan HL, Zhang M (2005) Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact 55(3):211–218
56.
go back to reference Chen XH, Peng JC, Li XQ, Deng FM, Wang JX, Li WZ (2001) Tribological behavior of carbon nanotubes—reinforced nickel matrix composite coatings. J Mater Sci Lett 20(22):2057–2060 Chen XH, Peng JC, Li XQ, Deng FM, Wang JX, Li WZ (2001) Tribological behavior of carbon nanotubes—reinforced nickel matrix composite coatings. J Mater Sci Lett 20(22):2057–2060
57.
go back to reference Chen X-H et al (2003) Carbon nanotube composite deposits with high hardness and high wear resistance. Adv Eng Mater 5(7):514–518 Chen X-H et al (2003) Carbon nanotube composite deposits with high hardness and high wear resistance. Adv Eng Mater 5(7):514–518
58.
go back to reference Chen W et al (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2):215–222 Chen W et al (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2):215–222
59.
go back to reference Zhou S-M, Zhang XB, Ding ZP, Min CY, Xu GL, Zhu WM (2007) Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos A: Appl Sci Manuf 38(2):301–306 Zhou S-M, Zhang XB, Ding ZP, Min CY, Xu GL, Zhu WM (2007) Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos A: Appl Sci Manuf 38(2):301–306
60.
go back to reference Salvetat J-P, Bonard JM, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260 Salvetat J-P, Bonard JM, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260
61.
go back to reference Meyyappan M (2005) Carbon nanotubes : science and applications. CRC Press, Boca Raton Meyyappan M (2005) Carbon nanotubes : science and applications. CRC Press, Boca Raton
62.
go back to reference Delaney P, Choi HJ, Ihm J, Louie SG, Cohen ML (1998) Broken symmetry and pseudogaps in ropes of carbon nanotubes. Nature 391(6666):466–468 Delaney P, Choi HJ, Ihm J, Louie SG, Cohen ML (1998) Broken symmetry and pseudogaps in ropes of carbon nanotubes. Nature 391(6666):466–468
63.
go back to reference Desai AV, Haque MA (2005) Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Struct 43(11):1787–1803 Desai AV, Haque MA (2005) Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Struct 43(11):1787–1803
64.
go back to reference Reihanian M, Bagherpour E, Paydar MH (2009) A model for volume fraction and particle size selection in tri-modal metal matrix composites. Mater Sci Eng A 513-514:172–175 Reihanian M, Bagherpour E, Paydar MH (2009) A model for volume fraction and particle size selection in tri-modal metal matrix composites. Mater Sci Eng A 513-514:172–175
65.
go back to reference Kondoh K, Threrujirapapong T, Imai H, Umeda J, Fugetsu B (2009) Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos Sci Technol 69(7):1077–1081 Kondoh K, Threrujirapapong T, Imai H, Umeda J, Fugetsu B (2009) Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos Sci Technol 69(7):1077–1081
66.
go back to reference Zeng X, Zhou GH, Xu Q, Xiong Y, Luo C, Wu J (2010) A new technique for dispersion of carbon nanotube in a metal melt. Mater Sci Eng A 527(20):5335–5340 Zeng X, Zhou GH, Xu Q, Xiong Y, Luo C, Wu J (2010) A new technique for dispersion of carbon nanotube in a metal melt. Mater Sci Eng A 527(20):5335–5340
67.
go back to reference Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494(1):175–189 Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494(1):175–189
68.
go back to reference Long Y, Zhang H, Wang T, Huang X, Li Y, Wu J, Chen H (2013) High-strength Ti–6Al–4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering. Mater Sci Eng A 585(Supplement C):408–414 Long Y, Zhang H, Wang T, Huang X, Li Y, Wu J, Chen H (2013) High-strength Ti–6Al–4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering. Mater Sci Eng A 585(Supplement C):408–414
69.
go back to reference Prabhu B, Suryanarayana C, An L, Vaidyanathan R (2006) Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling. Mater Sci Eng A 425(1):192–200 Prabhu B, Suryanarayana C, An L, Vaidyanathan R (2006) Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling. Mater Sci Eng A 425(1):192–200
70.
go back to reference Benjamin JS (1990) Mechanical alloying — a perspective. Met Powder Rep 45(2):122–127 Benjamin JS (1990) Mechanical alloying — a perspective. Met Powder Rep 45(2):122–127
71.
go back to reference Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1):1–184 Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1):1–184
72.
go back to reference Benjamin JS, Volin TE (1974) The mechanism of mechanical alloying. Metall Trans A 5(8):1929–1934 Benjamin JS, Volin TE (1974) The mechanism of mechanical alloying. Metall Trans A 5(8):1929–1934
73.
go back to reference Pierard N, Fonseca A, Konya Z, Willems I, van Tendeloo G, B.Nagy J (2001) Production of short carbon nanotubes with open tips by ball milling. Chem Phys Lett 335(1):1–8 Pierard N, Fonseca A, Konya Z, Willems I, van Tendeloo G, B.Nagy J (2001) Production of short carbon nanotubes with open tips by ball milling. Chem Phys Lett 335(1):1–8
74.
go back to reference Agarwal A, Bakshi SR, Lahiri D (2016) Carbon nanotubes: reinforced metal matrix composites. CRC Press, Boca Raton Agarwal A, Bakshi SR, Lahiri D (2016) Carbon nanotubes: reinforced metal matrix composites. CRC Press, Boca Raton
75.
go back to reference Ferrer-Anglada N, Gomis V, el-Hachemi Z, Weglikovska UD, Kaempgen M, Roth S (2006) Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu. Phys Status Solidi A 203(6):1082–1087 Ferrer-Anglada N, Gomis V, el-Hachemi Z, Weglikovska UD, Kaempgen M, Roth S (2006) Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu. Phys Status Solidi A 203(6):1082–1087
76.
go back to reference Shi Y et al (2004) Electroplated synthesis of Ni–P–UFD, Ni–P–CNTs, and Ni–P–UFD–CNTs composite coatings as hydrogen evolution electrodes. Mater Chem Phys 87(1):154–161 Shi Y et al (2004) Electroplated synthesis of Ni–P–UFD, Ni–P–CNTs, and Ni–P–UFD–CNTs composite coatings as hydrogen evolution electrodes. Mater Chem Phys 87(1):154–161
77.
go back to reference Liu B, Liu L, Liu X (2013) Effects of carbon nanotubes on hardness and internal stress in Ni–P coatings. Surf Eng 29(7):507–510 Liu B, Liu L, Liu X (2013) Effects of carbon nanotubes on hardness and internal stress in Ni–P coatings. Surf Eng 29(7):507–510
78.
go back to reference Chen X et al (2002) Electrodeposited nickel composites containing carbon nanotubes. Surf Coat Technol 155(2-3):274–278 Chen X et al (2002) Electrodeposited nickel composites containing carbon nanotubes. Surf Coat Technol 155(2-3):274–278
79.
go back to reference Changrong X, Xiaoxia G, Fanqing L, Dingkun P, Guangyao M (2001) Preparation of asymmetric Ni/ceramic composite membrane by electroless plating. Colloids Surf A Physicochem Eng Asp 179(2-3):229–235 Changrong X, Xiaoxia G, Fanqing L, Dingkun P, Guangyao M (2001) Preparation of asymmetric Ni/ceramic composite membrane by electroless plating. Colloids Surf A Physicochem Eng Asp 179(2-3):229–235
80.
go back to reference Choa Y-H, Yang JK, Kim BH, Jeong YK, Lee JS, Nakayama T, Sekino T, Niihara K (2003) Preparation and characterization of metal/ceramic nanoporous nanocomposite powders. J Magn Magn Mater 266(1-2):12–19 Choa Y-H, Yang JK, Kim BH, Jeong YK, Lee JS, Nakayama T, Sekino T, Niihara K (2003) Preparation and characterization of metal/ceramic nanoporous nanocomposite powders. J Magn Magn Mater 266(1-2):12–19
81.
go back to reference Cho Y, Choi G, Kim D (2006) A method to fabricate field emission tip arrays by electrocodeposition of single-wall carbon nanotubes and nickel. Electrochem Solid-State Lett 9(3):G107–G110 Cho Y, Choi G, Kim D (2006) A method to fabricate field emission tip arrays by electrocodeposition of single-wall carbon nanotubes and nickel. Electrochem Solid-State Lett 9(3):G107–G110
82.
go back to reference Arai S, Endo M, Kaneko N (2004) Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 42(3):641–644 Arai S, Endo M, Kaneko N (2004) Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 42(3):641–644
83.
go back to reference Guo C, Zuo Y, Zhao X, Zhao J, Xiong J (2007) The effects of pulse–reverse parameters on the properties of Ni–carbon nanotubes composite coatings. Surf Coat Technol 201(24):9491–9496 Guo C, Zuo Y, Zhao X, Zhao J, Xiong J (2007) The effects of pulse–reverse parameters on the properties of Ni–carbon nanotubes composite coatings. Surf Coat Technol 201(24):9491–9496
84.
go back to reference Sung-Kyu K, Tae-Sung O (2011) Electrodeposition behavior and characteristics of Ni-carbon nanotube composite coatings. Trans Nonferrous Metals Soc China 21:s68–s72 Sung-Kyu K, Tae-Sung O (2011) Electrodeposition behavior and characteristics of Ni-carbon nanotube composite coatings. Trans Nonferrous Metals Soc China 21:s68–s72
85.
go back to reference Kong J, Cassell AM, Dai H (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 292(4):567–574 Kong J, Cassell AM, Dai H (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 292(4):567–574
86.
go back to reference Ren Z, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391):1105–1107 Ren Z, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391):1105–1107
87.
go back to reference Shu J, Li H, Yang R, Shi Y, Huang X (2006) Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem Commun 8(1):51–54 Shu J, Li H, Yang R, Shi Y, Huang X (2006) Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem Commun 8(1):51–54
88.
go back to reference Kim TA, Oh SM, Nahm KS, Mo YH (2006) Prepara@on of Silicon-CNT (Carbon Nano Tube) Composites for Anode in Lithium SecondaryBaAeries.The Electrochemical Society 163 Kim TA, Oh SM, Nahm KS, Mo YH (2006) Prepara@on of Silicon-CNT (Carbon Nano Tube) Composites for Anode in Lithium SecondaryBaAeries.The Electrochemical Society 163
89.
go back to reference Wang YH, Li YH, Lu J, Zhang JB, Huang H (2006) Microstructure and thermal characteris@c of Si-coated mul@-walled carbon nanotubes.Nanotechnology 17(15): 3817 Wang YH, Li YH, Lu J, Zhang JB, Huang H (2006) Microstructure and thermal characteris@c of Si-coated mul@-walled carbon nanotubes.Nanotechnology 17(15): 3817
90.
go back to reference Koziol K, Shaffer M, Windle A (2005) Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition. Adv Mater 17(6):760–763 Koziol K, Shaffer M, Windle A (2005) Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition. Adv Mater 17(6):760–763
91.
go back to reference Friedrichs S et al (2005) Single-chirality multi-walled carbon nanotubes. Microsc Microanal 11(S02):1536–1537 Friedrichs S et al (2005) Single-chirality multi-walled carbon nanotubes. Microsc Microanal 11(S02):1536–1537
92.
go back to reference Ducati C, Koziol K, Friedrichs S, Yates TJV, Shaffer MS, Midgley PA, Windle AH (2006) Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. Small 2(6):774–784 Ducati C, Koziol K, Friedrichs S, Yates TJV, Shaffer MS, Midgley PA, Windle AH (2006) Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. Small 2(6):774–784
93.
go back to reference Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3):618–623 Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3):618–623
94.
go back to reference Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15):3124–3131 Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15):3124–3131
95.
go back to reference Montazeri A, Montazeri N, Pourshamsian K, Tcharkhtchi A (2011) The effect of sonication time and dispersing medium on the mechanical properties of multiwalled carbon nanotube (MWCNT)/epoxy composite. Int J Polym Anal Charact 16(7):465–476 Montazeri A, Montazeri N, Pourshamsian K, Tcharkhtchi A (2011) The effect of sonication time and dispersing medium on the mechanical properties of multiwalled carbon nanotube (MWCNT)/epoxy composite. Int J Polym Anal Charact 16(7):465–476
96.
go back to reference Duque JG, Parra-Vasquez ANG, Behabtu N, Green MJ, Higginbotham AL, Price BK, Leonard AD, Schmidt HK, Lounis B, Tour JM, Doorn SK, Cognet L, Pasquali M (2010) Diameter-dependent solubility of single-walled carbon nanotubes. ACS Nano 4(6):3063–3072 Duque JG, Parra-Vasquez ANG, Behabtu N, Green MJ, Higginbotham AL, Price BK, Leonard AD, Schmidt HK, Lounis B, Tour JM, Doorn SK, Cognet L, Pasquali M (2010) Diameter-dependent solubility of single-walled carbon nanotubes. ACS Nano 4(6):3063–3072
97.
go back to reference Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM (2008) Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci 328(2):421–428 Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM (2008) Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci 328(2):421–428
98.
go back to reference Kim JA, Seong DG, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44(10):1898–1905 Kim JA, Seong DG, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44(10):1898–1905
99.
go back to reference Wang Q, Han Y, Wang Y, Qin Y, Guo ZX (2008) Effect of surfactant structure on the stability of carbon nanotubes in aqueous solution. J Phys Chem B 112(24):7227–7233 Wang Q, Han Y, Wang Y, Qin Y, Guo ZX (2008) Effect of surfactant structure on the stability of carbon nanotubes in aqueous solution. J Phys Chem B 112(24):7227–7233
100.
go back to reference White B, Banerjee S, O'Brien S, Turro NJ, Herman IP (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111(37):13684–13690 White B, Banerjee S, O'Brien S, Turro NJ, Herman IP (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111(37):13684–13690
101.
go back to reference Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15(3):737–748 Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15(3):737–748
102.
go back to reference Shelimov KB, Esenaliev RO, Rinzler AG, Huffman CB, Smalley RE (1998) Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Phys Lett 282(5-6):429–434 Shelimov KB, Esenaliev RO, Rinzler AG, Huffman CB, Smalley RE (1998) Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Phys Lett 282(5-6):429–434
103.
go back to reference Lucas A, Zakri C, Maugey M, Pasquali M, van der Schoot P, Poulin P (2009) Kinetics of nanotube and microfiber scission under sonication. J Phys Chem C 113(48):20599–20605 Lucas A, Zakri C, Maugey M, Pasquali M, van der Schoot P, Poulin P (2009) Kinetics of nanotube and microfiber scission under sonication. J Phys Chem C 113(48):20599–20605
104.
go back to reference Mukhopadhyay K, Dwivedi CD, Mathur GN (2002) Conversion of carbon nanotubes to carbon nanofibers by sonication. Carbon 8(40):1373–1376 Mukhopadhyay K, Dwivedi CD, Mathur GN (2002) Conversion of carbon nanotubes to carbon nanofibers by sonication. Carbon 8(40):1373–1376
105.
go back to reference Li H, Guan L, Shi Z, Gu Z (2004) Direct synthesis of high purity single-walled carbon nanotube fibers by arc discharge. J Phys Chem B 108(15):4573–4575 Li H, Guan L, Shi Z, Gu Z (2004) Direct synthesis of high purity single-walled carbon nanotube fibers by arc discharge. J Phys Chem B 108(15):4573–4575
106.
go back to reference Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758 Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758
107.
go back to reference Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603 Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603
108.
go back to reference Wilson T, Tyburski A, DePies MR, Vilches OE, Becquet D, Bienfait M (2002) Adsorption of H2 and D2 on carbon nanotube bundles. J Low Temp Phys 126(1-2):403–408 Wilson T, Tyburski A, DePies MR, Vilches OE, Becquet D, Bienfait M (2002) Adsorption of H2 and D2 on carbon nanotube bundles. J Low Temp Phys 126(1-2):403–408
109.
go back to reference Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52(3):2083–2089 Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52(3):2083–2089
110.
go back to reference Ajayan P, Ebbesen T (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60(10):1025–1062 Ajayan P, Ebbesen T (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60(10):1025–1062
111.
go back to reference ChhowallaM A, Amaratunga G (2001) Synthesis of carbon ‘onions’ in water. Nature 414:506–507 ChhowallaM A, Amaratunga G (2001) Synthesis of carbon ‘onions’ in water. Nature 414:506–507
112.
go back to reference Vittori Antisari M (2003) R. Marazzi, and R. Krsmanovic, Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 41(12):2393–2401 Vittori Antisari M (2003) R. Marazzi, and R. Krsmanovic, Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 41(12):2393–2401
113.
go back to reference Huang L, Wu B, Chen J, Xue Y, Liu Y, Kajiura H, Li Y (2011) Synthesis of single-walled carbon nanotubes by an arc-discharge method using selenium as a promoter. Carbon 49(14):4792–4800 Huang L, Wu B, Chen J, Xue Y, Liu Y, Kajiura H, Li Y (2011) Synthesis of single-walled carbon nanotubes by an arc-discharge method using selenium as a promoter. Carbon 49(14):4792–4800
114.
go back to reference Zhang Y, Iijima S (1999) Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl Phys Lett 75(20):3087–3089 Zhang Y, Iijima S (1999) Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl Phys Lett 75(20):3087–3089
115.
go back to reference Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487 Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487
116.
go back to reference Rinzler A et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67(1):29–37 Rinzler A et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67(1):29–37
117.
go back to reference Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243(1-2):49–54 Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243(1-2):49–54
118.
go back to reference Zhang Y, Gu H, Iijima S (1998) Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl Phys Lett 73(26):3827–3829 Zhang Y, Gu H, Iijima S (1998) Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl Phys Lett 73(26):3827–3829
119.
go back to reference Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewicz M, Kowalewski TA, Szymanski Z, Stobinski L (2015) Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys Status Solidi B 252(8):1860–1867 Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewicz M, Kowalewski TA, Szymanski Z, Stobinski L (2015) Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys Status Solidi B 252(8):1860–1867
120.
go back to reference Suárez M et al (2013) Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. In: Ertuğ B (ed) Sintering Applications. InTech, Rijeka Ch. 13 Suárez M et al (2013) Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. In: Ertuğ B (ed) Sintering Applications. InTech, Rijeka Ch. 13
121.
go back to reference Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60(10):835–838 Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60(10):835–838
122.
go back to reference Matsugi K (1995) Effect of direct current pulse discharge on specific resistivity of copper and iron powder compacts. J Jpn Inst Metals 59:740–745 Matsugi K (1995) Effect of direct current pulse discharge on specific resistivity of copper and iron powder compacts. J Jpn Inst Metals 59:740–745
123.
go back to reference Shen Z, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85(8):1921–1927 Shen Z, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85(8):1921–1927
124.
go back to reference Chaim R (2007) Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater Sci Eng A 443(1-2):25–32 Chaim R (2007) Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater Sci Eng A 443(1-2):25–32
125.
go back to reference Kim KT, et al (2004) Characterization of carbon nanotubes/Cu nanocomposites processed by using nano-sized Cu powders. MRS Online Proceedings Library Archive, 821 Kim KT, et al (2004) Characterization of carbon nanotubes/Cu nanocomposites processed by using nano-sized Cu powders. MRS Online Proceedings Library Archive, 821
126.
go back to reference Majkic G, Chen Y (2006) Proc. 47th AiAA Conf., Newport. Rhode Island 7:1–5. Majkic G, Chen Y (2006) Proc. 47th AiAA Conf., Newport. Rhode Island 7:1–5.
127.
go back to reference Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A 696:10–25 Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A 696:10–25
128.
go back to reference Adegbenjo A et al (2017) Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater Des 128:119–129 Adegbenjo A et al (2017) Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater Des 128:119–129
129.
go back to reference Okoro AM, Machaka R, Lephuthing SS, Awotunde MA, Oke SR, Falodun OE, Olubambi PA (2019) Dispersion characteristics, interfacial bonding and nanostructural evolution of MWCNT in Ti6Al4V powders prepared by shift speed ball milling technique. J Alloys Compd 785:356–366 Okoro AM, Machaka R, Lephuthing SS, Awotunde MA, Oke SR, Falodun OE, Olubambi PA (2019) Dispersion characteristics, interfacial bonding and nanostructural evolution of MWCNT in Ti6Al4V powders prepared by shift speed ball milling technique. J Alloys Compd 785:356–366
130.
go back to reference Adegbenjo AO, Obadele BA, Olubambi PA (2018) Densification, hardness and tribological characteristics of MWCNTs reinforced Ti6Al4V compacts consolidated by spark plasma sintering. J Alloys Compd 749:818–833 Adegbenjo AO, Obadele BA, Olubambi PA (2018) Densification, hardness and tribological characteristics of MWCNTs reinforced Ti6Al4V compacts consolidated by spark plasma sintering. J Alloys Compd 749:818–833
131.
go back to reference Xu R, Tan Z, Xiong D, Fan G, Guo Q, Zhang J, Su Y, Li Z, Zhang D (2017) Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos A: Appl Sci Manuf 96:57–66 Xu R, Tan Z, Xiong D, Fan G, Guo Q, Zhang J, Su Y, Li Z, Zhang D (2017) Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos A: Appl Sci Manuf 96:57–66
132.
go back to reference Ameri S, Sadeghian Z, Kazeminezhad I (2016) Effect of CNT addition approach on the microstructure and properties of NiAl-CNT nanocomposites produced by mechanical alloying and spark plasma sintering. Intermetallics 76:41–48 Ameri S, Sadeghian Z, Kazeminezhad I (2016) Effect of CNT addition approach on the microstructure and properties of NiAl-CNT nanocomposites produced by mechanical alloying and spark plasma sintering. Intermetallics 76:41–48
133.
go back to reference Groven LJ, Puszynski JA (2012) Combustion synthesis and characterization of nickel aluminide–carbon nanotube composites. Chem Eng J 183:515–525 Groven LJ, Puszynski JA (2012) Combustion synthesis and characterization of nickel aluminide–carbon nanotube composites. Chem Eng J 183:515–525
134.
go back to reference Chang S-Y, Lin S-J (1997) Processing stainless steel fibre reinforced NiAl matrix composites by reactive hot pressing. J Mater Sci 32(19):5127–5135 Chang S-Y, Lin S-J (1997) Processing stainless steel fibre reinforced NiAl matrix composites by reactive hot pressing. J Mater Sci 32(19):5127–5135
135.
go back to reference Hunt EM, Plantier KB, Pantoya ML (2004) Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide. Acta Mater 52(11):3183–3191 Hunt EM, Plantier KB, Pantoya ML (2004) Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide. Acta Mater 52(11):3183–3191
Metadata
Title
Carbon nanotube-reinforced intermetallic matrix composites: processing challenges, consolidation, and mechanical properties
Authors
Olusoji Oluremi Ayodele
Mary Ajimegoh Awotunde
Mxolisi Brendon Shongwe
Adewale Oladapo Adegbenjo
Bukola Joseph Babalola
Ayorinde Tayo Olanipekun
Peter Apata Olubambi
Publication date
20-07-2019
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 9-12/2019
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04095-1

Other articles of this Issue 9-12/2019

The International Journal of Advanced Manufacturing Technology 9-12/2019 Go to the issue

Premium Partners