Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 3/2024

06-04-2022 | Original Article

Catalytic hydrothermal liquefaction of alkali lignin at low temperature: Effect of acid and base catalysts on phenolic monomers production

Authors: Bijoy Biswas, Avnish Kumar, Komal Saini, Shivam Rawat, Ramandeep Kaur, Bhavya B. Krishna, Thallada Bhaskar

Published in: Biomass Conversion and Biorefinery | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Developing efficient process and technologies for the conversion of lignin into valuable functional chemicals is an important aspect of the biorefinery concept. In this study, the effect of low-cost base catalyst (NaOH, KOH, K2CO3 and Na2CO3) and acid catalyst formic acid (FA) was examined for the effective depolymerization of lignin into monomers of phenolic compounds at low temperatures (140, 160 and 180 °C). Also, different reaction residence time (30, 60 and 120 min.), catalyst amounts have been varied to optimize the liquefaction reaction conditions. In the case of non-catalytic experiments, maximum bio-oil yield (14.2 wt.%) was obtained at 160 °C for 30 min. reaction time. With K2CO3 catalysts, maximum bio-oil yield of 26.0 wt.% was observed, whereas in case of formic acid (FA) catalyst lignin depolymerization is very effective as it produced maximum bio-oil yield of 78.0 wt.%. Bio-oils were characterized using GC–MS, FT-IR, NMR analytical methods. Bio-oil analysis showed that it contained higher amount of phenolic monomers after lignin depolymerization. Higher amount of vanillin (41.9%) and isovanillin (44.9%) was found without catalyst and with FA liquefaction reaction. However with base catalyst, dibutyl phthalate (28.8%) was observed as the major compound in lignin depolymerization derived bio-oil. Solid residue analysis shows that base and acid catalyst depolymerized lignin in different ways by breaking of C-O and C–C bonds.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kumar A, BiswasB Bhaskar T (2020) Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin. Bioresour Technol 299:122589CrossRef Kumar A, BiswasB Bhaskar T (2020) Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin. Bioresour Technol 299:122589CrossRef
3.
go back to reference Bengoechea MO, Gandarias I, Arias PL, Barth T (2017) Unraveling the role of formic acid and the type of solvent in the catalytic conversion of lignin: a holistic approach. ChemSusChem 10:754–766CrossRef Bengoechea MO, Gandarias I, Arias PL, Barth T (2017) Unraveling the role of formic acid and the type of solvent in the catalytic conversion of lignin: a holistic approach. ChemSusChem 10:754–766CrossRef
4.
go back to reference Ha JM, Hwang KR, Kim YM, Jae J, Kim KH, Lee HW, Kim JY, Park YK (2019) Recent progress in the thermal and catalytic conversion of lignin. Renew Sust Energ Rev 111:422–441CrossRef Ha JM, Hwang KR, Kim YM, Jae J, Kim KH, Lee HW, Kim JY, Park YK (2019) Recent progress in the thermal and catalytic conversion of lignin. Renew Sust Energ Rev 111:422–441CrossRef
5.
go back to reference Belkheiri T, Mattsson C, Andersson S-I, Olausson L, Åmand L-E, Theliander H, Vamling L (2016) Effect of pH on kraft lignin depolymerisation in subcritical water. Energy Fuel 30(6):4916–4924CrossRef Belkheiri T, Mattsson C, Andersson S-I, Olausson L, Åmand L-E, Theliander H, Vamling L (2016) Effect of pH on kraft lignin depolymerisation in subcritical water. Energy Fuel 30(6):4916–4924CrossRef
6.
go back to reference Beauchet R, Rivera FM, Lavoie JM (2012) Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresour Technol 121:328–334CrossRef Beauchet R, Rivera FM, Lavoie JM (2012) Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresour Technol 121:328–334CrossRef
7.
go back to reference Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chemistry 17(21):5939–5948CrossRef Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chemistry 17(21):5939–5948CrossRef
8.
go back to reference Toledano A, Serrano L, Labidi J (2012) Organosolv lignin depolymerization with different base catalysts. J Chem Technol Biotechnol 87(11):1593–1599CrossRef Toledano A, Serrano L, Labidi J (2012) Organosolv lignin depolymerization with different base catalysts. J Chem Technol Biotechnol 87(11):1593–1599CrossRef
9.
go back to reference Chaudhary R, Dhepe PL (2017) Solid base catalyzed depolymerization of lignin into low molecular weight products. Green Chem 19:778CrossRef Chaudhary R, Dhepe PL (2017) Solid base catalyzed depolymerization of lignin into low molecular weight products. Green Chem 19:778CrossRef
10.
go back to reference Zhang S, Hayashi JI, Li CZ (2011) Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of victorian brown coal. Part ff. Effects of volatile-char interactions on char–H2O and char–O2 reactivities. Fuel 90(4):1655–1661CrossRef Zhang S, Hayashi JI, Li CZ (2011) Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of victorian brown coal. Part ff. Effects of volatile-char interactions on char–H2O and char–O2 reactivities. Fuel 90(4):1655–1661CrossRef
11.
go back to reference Kristianto I, Limarta SO, Lee H, Ha J, Suh DJ, Jae J (2017) Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media. Biores Technol 234:424–431CrossRef Kristianto I, Limarta SO, Lee H, Ha J, Suh DJ, Jae J (2017) Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media. Biores Technol 234:424–431CrossRef
12.
go back to reference Ma Z, Sun Q, Ye J, Yao Q, Zhao C (2016) Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS. J Anal Appl Pyrol 117:116–124CrossRef Ma Z, Sun Q, Ye J, Yao Q, Zhao C (2016) Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS. J Anal Appl Pyrol 117:116–124CrossRef
13.
go back to reference Wang S, Lin H, Ru B, Sun W, Wang Y, Luo Z (2014) Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG–FTIR analysis. J Anal Appl Pyrolysis 108:78–85CrossRef Wang S, Lin H, Ru B, Sun W, Wang Y, Luo Z (2014) Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG–FTIR analysis. J Anal Appl Pyrolysis 108:78–85CrossRef
14.
go back to reference Fan L, Ruan R, Li J, Mac L, Wang C, Zhoua W (2020) Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite. Appl Energy 263:114629CrossRef Fan L, Ruan R, Li J, Mac L, Wang C, Zhoua W (2020) Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite. Appl Energy 263:114629CrossRef
15.
go back to reference Huang S, Mahmood N, Zhang Y, Tymchyshyn M, Yuan Z, Xu C (2017) Reductive de-polymerization of kraft lignin with formic acid at low temperatures using inexpensive supported Ni-based catalysts. Fuel 209:579–586CrossRef Huang S, Mahmood N, Zhang Y, Tymchyshyn M, Yuan Z, Xu C (2017) Reductive de-polymerization of kraft lignin with formic acid at low temperatures using inexpensive supported Ni-based catalysts. Fuel 209:579–586CrossRef
16.
go back to reference Lu X, Zhu X, Guo H, Que H, Wang D, Liang D, He T, Hu C, Xu C, Gu X (2020) Efficient Depolymerization of Alkaline Lignin to Phenolic Compounds at Low Temperatures with Formic Acid over Inexpensive Fe−Zn/Al2O3 Catalyst. Energy Fuels 34:7121–7130CrossRef Lu X, Zhu X, Guo H, Que H, Wang D, Liang D, He T, Hu C, Xu C, Gu X (2020) Efficient Depolymerization of Alkaline Lignin to Phenolic Compounds at Low Temperatures with Formic Acid over Inexpensive Fe−Zn/Al2O3 Catalyst. Energy Fuels 34:7121–7130CrossRef
18.
go back to reference Mahmood N, Yuan Z, Schmidt J, Charles X, C, (2013) Production of polyols via direct hydrolysis of kraft lignin: Effect of process parameters. Bioresour Technol 139:13–20CrossRef Mahmood N, Yuan Z, Schmidt J, Charles X, C, (2013) Production of polyols via direct hydrolysis of kraft lignin: Effect of process parameters. Bioresour Technol 139:13–20CrossRef
19.
go back to reference Gasson JR, Forchheim D, Sutter T, Hornung U, Kruse A, Barth T (2012) Modeling the lignin degradation kinetics in an ethanol/formic acid solvolysis approach. Part 1. Kinetic model development. Ind Eng Chem Res 51:10595–606CrossRef Gasson JR, Forchheim D, Sutter T, Hornung U, Kruse A, Barth T (2012) Modeling the lignin degradation kinetics in an ethanol/formic acid solvolysis approach. Part 1. Kinetic model development. Ind Eng Chem Res 51:10595–606CrossRef
20.
go back to reference Liu Q, Li P, Liu N, Shen D (2017) Lignin depolymerization to aromatic monomers and oligomers in isopropanol assisted by microwave heating. Polym Degrad Stab 135:54–60CrossRef Liu Q, Li P, Liu N, Shen D (2017) Lignin depolymerization to aromatic monomers and oligomers in isopropanol assisted by microwave heating. Polym Degrad Stab 135:54–60CrossRef
21.
go back to reference Shen D, Liu N, Dong C, Xiao R, Gu S (2015) Catalytic solvolysis of lignin with the modified HUSYs in formic acid assisted by microwave heating. Chem Eng J 270:641–647CrossRef Shen D, Liu N, Dong C, Xiao R, Gu S (2015) Catalytic solvolysis of lignin with the modified HUSYs in formic acid assisted by microwave heating. Chem Eng J 270:641–647CrossRef
22.
go back to reference Shao L, Zhang Q, You T, Zhang X, Xu F (2018) Microwave-assisted efficient depolymerization of alkaline lignin in methanol/ formic acid media. Biores Technol 264:238–243CrossRef Shao L, Zhang Q, You T, Zhang X, Xu F (2018) Microwave-assisted efficient depolymerization of alkaline lignin in methanol/ formic acid media. Biores Technol 264:238–243CrossRef
23.
go back to reference Biswas B, Singh R, Kumar J, Khan AA, Krishna BB, Bhaskar T (2016) Slow pyrolysis of prot, alkali, and dealkaline lignins for production of chemicals. 213:319–326 Biswas B, Singh R, Kumar J, Khan AA, Krishna BB, Bhaskar T (2016) Slow pyrolysis of prot, alkali, and dealkaline lignins for production of chemicals. 213:319–326
24.
go back to reference Ye Y, Zhang Y, Fan J, Chang J (2012) Novel method for production of phenolics bycombining lignin extraction with lignin depolymerization in aqueous ethanol. Ind Eng Chem Res 51:103–110CrossRef Ye Y, Zhang Y, Fan J, Chang J (2012) Novel method for production of phenolics bycombining lignin extraction with lignin depolymerization in aqueous ethanol. Ind Eng Chem Res 51:103–110CrossRef
25.
go back to reference Bengoechea MO, Hertzberg A, Mileti′c N, Arias PL, Barth T (2015) Simultaneous catalytic de-polymerization and hydrodeoxygenation of lignin in water/formic acid media with Rh/Al2O3, Ru/Al2O3 and Pd/Al2O3 as bifunctional catalysts. J Anal Appl Pyrolysis 113:713–722CrossRef Bengoechea MO, Hertzberg A, Mileti′c N, Arias PL, Barth T (2015) Simultaneous catalytic de-polymerization and hydrodeoxygenation of lignin in water/formic acid media with Rh/Al2O3, Ru/Al2O3 and Pd/Al2O3 as bifunctional catalysts. J Anal Appl Pyrolysis 113:713–722CrossRef
26.
go back to reference Lyckeskog HN, Mattsson C, Åmand LE, Olausson L, Andersson SI, Vamling L, Theliander H (2016) Storage stability of bio-oils derived from the catalytic conversion of softwood Kraft lignin in subcritical water. Energy Fuels 30:3097–3106CrossRef Lyckeskog HN, Mattsson C, Åmand LE, Olausson L, Andersson SI, Vamling L, Theliander H (2016) Storage stability of bio-oils derived from the catalytic conversion of softwood Kraft lignin in subcritical water. Energy Fuels 30:3097–3106CrossRef
27.
go back to reference Islam MA, Akber MA, Limon SH, Akbor MA, Islam MA (2019) Characterization of solid biofuel produced from banana stalk via hydrothermal carbonization. Biomass Conv Bioref 9:651–658CrossRef Islam MA, Akber MA, Limon SH, Akbor MA, Islam MA (2019) Characterization of solid biofuel produced from banana stalk via hydrothermal carbonization. Biomass Conv Bioref 9:651–658CrossRef
28.
go back to reference Nakason K, Panyapinyopol B, Kanokkantapong V, Viriya-empikul N, Kraithong W, Pavasant P (2018) Characteristics of hydrochar and hydrothermal liquid products from hydrothermal carbonization of corncob. Biomass Conv Bioref 8:199–210CrossRef Nakason K, Panyapinyopol B, Kanokkantapong V, Viriya-empikul N, Kraithong W, Pavasant P (2018) Characteristics of hydrochar and hydrothermal liquid products from hydrothermal carbonization of corncob. Biomass Conv Bioref 8:199–210CrossRef
29.
go back to reference Biswas B, Bisht Y, Kumar J, Yenumala SR, Bhaskar T (2022) Effects of temperature and solvent on hydrothermal liquefaction of the corncob for production of phenolic monomers. Biomass Convers Bioref 1:1–11 Biswas B, Bisht Y, Kumar J, Yenumala SR, Bhaskar T (2022) Effects of temperature and solvent on hydrothermal liquefaction of the corncob for production of phenolic monomers. Biomass Convers Bioref 1:1–11
Metadata
Title
Catalytic hydrothermal liquefaction of alkali lignin at low temperature: Effect of acid and base catalysts on phenolic monomers production
Authors
Bijoy Biswas
Avnish Kumar
Komal Saini
Shivam Rawat
Ramandeep Kaur
Bhavya B. Krishna
Thallada Bhaskar
Publication date
06-04-2022
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 3/2024
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02603-0

Other articles of this Issue 3/2024

Biomass Conversion and Biorefinery 3/2024 Go to the issue