Skip to main content
Top

2019 | OriginalPaper | Chapter

39. Cellulose-Based Hydrogels as Biomaterials

Authors : Serdar Sezer, İsa Şahin, Kevser Öztürk, Vildan Şanko, Zeynep Koçer, Ümran Aydemir Sezer

Published in: Cellulose-Based Superabsorbent Hydrogels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrogels are three-dimensional hydrophilic network structures that vary greatly in swelling/shrinkage properties against minor changes such as light density, solvent composition, ionic strength, pH, and temperature. Cellulose-based hydrogels are derived from natural sources which are biodegradable and low-immunologic. These hydrogels are produced in four different ways: those obtained directly from native cellulose (including bacterial cellulose), those derived from cellulose derivatives (methyl cellulose, carboxymethyl cellulose, hydroxy methyl cellulose, etc.), those obtained with other polymers as a composite, and finally those obtained from cellulose-inorganic hybrids. Cellulose hydrogels and its derivatives have many desirable properties such as high water retention capacity, high crystallinity, fine fiber network, easy formability, and high tensile strength. In addition, some cellulose derivatives exhibit intelligent behavior against physiological variables such as pH and ionic strength. Cellulose-based hydrogels have advantages such as better biocompatibility, less latent toxicity, and lower cost than the most synthetic polymer hydrogels. Because of these advantages, cellulose-based hydrogels are preferred to be used in industrial pharmaceutics and biomedical fields. This chapter will discuss applications of cellulose-based hydrogels in pharmaceutical industry and biomedical fields such as drug release systems, wound healing, and tissue engineering. In addition, future prospects on cellulose-based hydrogels will be addressed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273CrossRefPubMed Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273CrossRefPubMed
2.
go back to reference Esposito A, Sannino A, Cozzolino A, Nappo QS, Lamberti M, Ambrosio L, Nicolais L (2005) Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 26:4101–4110CrossRefPubMed Esposito A, Sannino A, Cozzolino A, Nappo QS, Lamberti M, Ambrosio L, Nicolais L (2005) Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 26:4101–4110CrossRefPubMed
3.
go back to reference Ogushi Y, Sakai S, Kawakami K (2007) Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications. J Biosci Bioeng 104:30–33CrossRefPubMed Ogushi Y, Sakai S, Kawakami K (2007) Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications. J Biosci Bioeng 104:30–33CrossRefPubMed
4.
go back to reference Markets&Markets Reports. Hydrocolloids market: global forecast to 2020 Markets&Markets Reports. Hydrocolloids market: global forecast to 2020
5.
go back to reference Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:1–19CrossRef Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:1–19CrossRef
6.
go back to reference Joubert F, Musa OM, Hodgson DRW, Cameron NR (2014) The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem Soc Rev 43:7217–7235CrossRefPubMed Joubert F, Musa OM, Hodgson DRW, Cameron NR (2014) The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem Soc Rev 43:7217–7235CrossRefPubMed
7.
go back to reference Nokhodchi A, Raja S, Patel P, Asare-Addo K (2012) The role of oral controlled release matrix tablets in drug delivery systems. Bioimpacts 2(4):175–187PubMedPubMedCentral Nokhodchi A, Raja S, Patel P, Asare-Addo K (2012) The role of oral controlled release matrix tablets in drug delivery systems. Bioimpacts 2(4):175–187PubMedPubMedCentral
8.
9.
go back to reference Li Y, Zhu L, Fan Y, Li Y, Cheng L, Liu W, Li X, Fan X (2016) Formation and controlled drug release using a three-component supramolecular hydrogel for anti-schistosoma japonicum cercariae. Nanomaterials 6(3):46CrossRefPubMedCentral Li Y, Zhu L, Fan Y, Li Y, Cheng L, Liu W, Li X, Fan X (2016) Formation and controlled drug release using a three-component supramolecular hydrogel for anti-schistosoma japonicum cercariae. Nanomaterials 6(3):46CrossRefPubMedCentral
10.
go back to reference Buwalda SJ, Vermonden T, Hennink WE (2017) Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules 18:316–330CrossRefPubMed Buwalda SJ, Vermonden T, Hennink WE (2017) Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules 18:316–330CrossRefPubMed
11.
go back to reference Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRef Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRef
12.
go back to reference Bindu SM, Vadithya A, Chatterjee A (2012) As a review on hydrogels as drug delivery in the pharmaceutical field. Int J Pharm Chem Sci 1(2):642–661 Bindu SM, Vadithya A, Chatterjee A (2012) As a review on hydrogels as drug delivery in the pharmaceutical field. Int J Pharm Chem Sci 1(2):642–661
13.
go back to reference Lee SC, Kwon K, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65(1):17–20CrossRefPubMed Lee SC, Kwon K, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65(1):17–20CrossRefPubMed
14.
go back to reference Simões S, Figueiras A, Veiga F (2012) Modular hydrogels for drug delivery. J Biomater Nanobiotechnol 3:185–199CrossRef Simões S, Figueiras A, Veiga F (2012) Modular hydrogels for drug delivery. J Biomater Nanobiotechnol 3:185–199CrossRef
15.
go back to reference De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef
16.
go back to reference Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D (2012) Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater 8(5):1838–1848CrossRefPubMed Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D (2012) Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater 8(5):1838–1848CrossRefPubMed
17.
go back to reference Liang R, Yuan H, Xi G, Zhou Q (2009) Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it. Carbohydr Polym 77:181–187CrossRef Liang R, Yuan H, Xi G, Zhou Q (2009) Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it. Carbohydr Polym 77:181–187CrossRef
18.
go back to reference Peng Z, Chen F (2010) Synthesis and properties of temperature-sensitive hydrogel based on hydroxyethyl cellulose. Int J Polym Mater 59:450–461CrossRef Peng Z, Chen F (2010) Synthesis and properties of temperature-sensitive hydrogel based on hydroxyethyl cellulose. Int J Polym Mater 59:450–461CrossRef
19.
go back to reference Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRef Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRef
20.
go back to reference Bastedo W (1939) The United States Pharmacopeial Convention, Inc., decennial period, 1930–1940 committee of revision of the United States Pharmacopeia. J Am Med Assoc 113(2):164CrossRef Bastedo W (1939) The United States Pharmacopeial Convention, Inc., decennial period, 1930–1940 committee of revision of the United States Pharmacopeia. J Am Med Assoc 113(2):164CrossRef
21.
go back to reference Malhotra B, Kharkwal H, Yadav MP (2016) Cellulose-based polymeric system in drug delivery. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery, CABI, Oxfordshire, pp 10–21 Malhotra B, Kharkwal H, Yadav MP (2016) Cellulose-based polymeric system in drug delivery. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery, CABI, Oxfordshire, pp 10–21
22.
go back to reference Jaiyeoba K, Alfa J, Odeniyi M (2006) Direct compression properties of microcrystalline cellulose and its silicified product. East Cent Afr J Pharm Sci 7(3):56–59 Jaiyeoba K, Alfa J, Odeniyi M (2006) Direct compression properties of microcrystalline cellulose and its silicified product. East Cent Afr J Pharm Sci 7(3):56–59
23.
go back to reference Lilienfeld A, Hunna E (1943) Dressing of fabrics and artificial structures, United States Patent Office US2327912 A Lilienfeld A, Hunna E (1943) Dressing of fabrics and artificial structures, United States Patent Office US2327912 A
24.
go back to reference Martina B, Kateřina K, Miloslava R, Jan G, Ruta M (2009) Oxycellulose: significant characteristics in relation to its pharmaceutical and medical applications. Adv Polym Technol 28:199–208CrossRef Martina B, Kateřina K, Miloslava R, Jan G, Ruta M (2009) Oxycellulose: significant characteristics in relation to its pharmaceutical and medical applications. Adv Polym Technol 28:199–208CrossRef
25.
go back to reference Malhotra B, Kharkwal H, Yadav MP (1999) Textbook of organic medicinal and pharmaceutical chemistry, 10th edn, edited by Jaime N Delgado, William A. Remers, reviewed in J Med Chem 42(13):2491–2491 Malhotra B, Kharkwal H, Yadav MP (1999) Textbook of organic medicinal and pharmaceutical chemistry, 10th edn, edited by Jaime N Delgado, William A. Remers, reviewed in J Med Chem 42(13):2491–2491
26.
go back to reference Banker GS, Kumar V (1995) Microfibrillated oxycellulose. US patent 5405953 Banker GS, Kumar V (1995) Microfibrillated oxycellulose. US patent 5405953
27.
go back to reference Silvestre AJ, Freire CS, Neto CP (2014) Do bacterial cellulose membranes have potential in drug-delivery systems? Expert Opin Drug Deliv 11(7):1113–1124CrossRefPubMed Silvestre AJ, Freire CS, Neto CP (2014) Do bacterial cellulose membranes have potential in drug-delivery systems? Expert Opin Drug Deliv 11(7):1113–1124CrossRefPubMed
28.
go back to reference Lonnberg H, Fogelstrom L, Samir MASA, Berglund L, Malmstrom E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(e-caprolactone) – synthesis and characterization. Eur Polym J 44(9):2991–2997CrossRef Lonnberg H, Fogelstrom L, Samir MASA, Berglund L, Malmstrom E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(e-caprolactone) – synthesis and characterization. Eur Polym J 44(9):2991–2997CrossRef
29.
go back to reference Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous. Biomacromolecules 7(1):183–189CrossRefPubMed Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous. Biomacromolecules 7(1):183–189CrossRefPubMed
30.
go back to reference Dogan H, Hilmioglu ND (2009) Dissolution of cellulose with NMMO by microwave heating. Carbohydr Polym 75(1):90–94CrossRef Dogan H, Hilmioglu ND (2009) Dissolution of cellulose with NMMO by microwave heating. Carbohydr Polym 75(1):90–94CrossRef
31.
go back to reference Halib N, Amin M, Ahmad I (2012) Physicochemical properties and characterization of nata de coco as a source of cellulose. Sains Malays 41:205–211 Halib N, Amin M, Ahmad I (2012) Physicochemical properties and characterization of nata de coco as a source of cellulose. Sains Malays 41:205–211
32.
go back to reference Ibrahim SM, El Salmawi KM, Zahran AH (2007) Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J Appl Polym Sci 104:2003–2008CrossRef Ibrahim SM, El Salmawi KM, Zahran AH (2007) Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J Appl Polym Sci 104:2003–2008CrossRef
33.
go back to reference Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRef Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRef
34.
go back to reference Pandey M, Mohamad N, Amin MC (2014) Bacterial cellulose/acrylamide pH-sensitive smart hydrogel: development, characterization, and toxicity studies in ICR mice model. Mol Pharm 11(10):3596–3608CrossRefPubMed Pandey M, Mohamad N, Amin MC (2014) Bacterial cellulose/acrylamide pH-sensitive smart hydrogel: development, characterization, and toxicity studies in ICR mice model. Mol Pharm 11(10):3596–3608CrossRefPubMed
35.
go back to reference Roman M, Dong S, Hirani A, Lee YW (2009) Cellulose nanocrystals for drug delivery. In: Edgar KJ, Heinze T, Buchanan CM (eds) Polysaccharide materials, performance by design. ACS Symp Ser eBooks. American Chemical Society, Washington DC, pp 81–91 Roman M, Dong S, Hirani A, Lee YW (2009) Cellulose nanocrystals for drug delivery. In: Edgar KJ, Heinze T, Buchanan CM (eds) Polysaccharide materials, performance by design. ACS Symp Ser eBooks. American Chemical Society, Washington DC, pp 81–91
36.
go back to reference Zakaria A, Afifi SA, Elkhodairy K (2016) Newly developed topical cefotaxime sodium hydrogels: antibacterial activity and in vivo evaluation. Biomed Res Int 2016:1–15CrossRef Zakaria A, Afifi SA, Elkhodairy K (2016) Newly developed topical cefotaxime sodium hydrogels: antibacterial activity and in vivo evaluation. Biomed Res Int 2016:1–15CrossRef
37.
go back to reference Uppugunduri S (2006) Topical compositions comprising one or more of 44-thiouridine, isomaltitol and uridine. WO 2006073359 A1 Uppugunduri S (2006) Topical compositions comprising one or more of 44-thiouridine, isomaltitol and uridine. WO 2006073359 A1
38.
go back to reference Vlaia L, Coneac G, Olariu I, Vlaia V, Lupuleasa D (2016) Cellulose derivatives based hydrogels as vehicles for dermal and transdermal drug delivery. In: Majee SB (ed) Emerging concepts in analysis and applications of hydrogels. InTech, pp 159–200 Vlaia L, Coneac G, Olariu I, Vlaia V, Lupuleasa D (2016) Cellulose derivatives based hydrogels as vehicles for dermal and transdermal drug delivery. In: Majee SB (ed) Emerging concepts in analysis and applications of hydrogels. InTech, pp 159–200
39.
go back to reference Kadjji VG, Betageri GV (2011) Water soluble polymers for pharmaceutical applications. Polymers 3(4):1972–2009CrossRef Kadjji VG, Betageri GV (2011) Water soluble polymers for pharmaceutical applications. Polymers 3(4):1972–2009CrossRef
40.
go back to reference Onofrei MD, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Mendez-Vilas A, Solano-Martin A Polymer science: research advances, practical applications and educational aspects. Formatex Research Center, pp 108–120 Onofrei MD, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Mendez-Vilas A, Solano-Martin A Polymer science: research advances, practical applications and educational aspects. Formatex Research Center, pp 108–120
41.
go back to reference Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients. Pharmaceutical Press, London Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients. Pharmaceutical Press, London
42.
go back to reference Hamed E, Moe D, Khankari R, Hontz J (2005) Binders and solvents. In: Parikh DM (ed) Handbook of pharmaceutical granulation technology. Taylor & Francis Group LLC, pp 109–128 Hamed E, Moe D, Khankari R, Hontz J (2005) Binders and solvents. In: Parikh DM (ed) Handbook of pharmaceutical granulation technology. Taylor & Francis Group LLC, pp 109–128
43.
go back to reference Ghatnekar G (2013) Topical gels containing alpha connexin c-terminal (act) peptides. WO 2013131040 A1 Ghatnekar G (2013) Topical gels containing alpha connexin c-terminal (act) peptides. WO 2013131040 A1
44.
go back to reference Ashland Aqualon (1999) NATROSOL®hydroxyethylcellulose a nonionic water-soluble polymer. Physical and chemical properties. Ashland Aqualon Functional Ingredients, Wilmington. Technical literature Ashland Aqualon (1999) NATROSOL®hydroxyethylcellulose a nonionic water-soluble polymer. Physical and chemical properties. Ashland Aqualon Functional Ingredients, Wilmington. Technical literature
45.
go back to reference Ashland Aqualon (2012) Functional ingredients. Technical literature: Klucel hydroxypropyl-cellulose physical and chemical properties. Ashland Aqualon Functional Ingredients, Wilmington. Technical literature Ashland Aqualon (2012) Functional ingredients. Technical literature: Klucel hydroxypropyl-cellulose physical and chemical properties. Ashland Aqualon Functional Ingredients, Wilmington. Technical literature
46.
go back to reference Ofner IIICM, Klech-Gelotte CM (2007) Gels and jellies. In: Swarbrick J (ed) Encyclopedia of pharmaceutical technology, vol 3, 3rd edn. Informa Healthcare, New York, pp 1875–1890 Ofner IIICM, Klech-Gelotte CM (2007) Gels and jellies. In: Swarbrick J (ed) Encyclopedia of pharmaceutical technology, vol 3, 3rd edn. Informa Healthcare, New York, pp 1875–1890
47.
go back to reference Dow Chemical Company (2002) Methocel cellulose ethers technical book, USA Dow Chemical Company (2002) Methocel cellulose ethers technical book, USA
48.
go back to reference Dow Chemical Company (2000) Using METHOCEL cellulose ethers for controlled release of drugs in hydrophilic matrix systems, USA Dow Chemical Company (2000) Using METHOCEL cellulose ethers for controlled release of drugs in hydrophilic matrix systems, USA
49.
go back to reference Grover JA (1993) Methylcellulose and derivatives. In: Whistler RL, BeMiller JN (eds) Industrial gums: polysaccharides and their derivatives, 3rd edn. Academic Press Inc, San Diego, pp 475–500CrossRef Grover JA (1993) Methylcellulose and derivatives. In: Whistler RL, BeMiller JN (eds) Industrial gums: polysaccharides and their derivatives, 3rd edn. Academic Press Inc, San Diego, pp 475–500CrossRef
50.
go back to reference Shin Etsu Chemical Co. Ltd. (2005) Metolose® water-soluble cellulose ethers, Japan Shin Etsu Chemical Co. Ltd. (2005) Metolose® water-soluble cellulose ethers, Japan
51.
go back to reference Chakraborty P, Ghosh A, Chakraborty DD (2015) Polymeric systems in quick dissolving novel films. In: Thakur VK, Thakur MK (eds) Handbook of polymers for pharmaceutical technologies, structure and chemistry. Scrivener Publishing LLC, Wiley, Beverly, pp 143–165 Chakraborty P, Ghosh A, Chakraborty DD (2015) Polymeric systems in quick dissolving novel films. In: Thakur VK, Thakur MK (eds) Handbook of polymers for pharmaceutical technologies, structure and chemistry. Scrivener Publishing LLC, Wiley, Beverly, pp 143–165
52.
go back to reference Silva SM, Pinto FV, Antunes FE, Miguel MG, Sousa JJ, Pais AA (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci 327(2):333–340CrossRefPubMed Silva SM, Pinto FV, Antunes FE, Miguel MG, Sousa JJ, Pais AA (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci 327(2):333–340CrossRefPubMed
54.
go back to reference Banks SR, Sammon C, Melia CD, Timmins P (2005) Monitoring the thermal gelation of cellulose ethers in situ using attenuated total reflectance fourier transform infrared spectroscopy. Appl Spectrosc 59(4):452–459CrossRefPubMed Banks SR, Sammon C, Melia CD, Timmins P (2005) Monitoring the thermal gelation of cellulose ethers in situ using attenuated total reflectance fourier transform infrared spectroscopy. Appl Spectrosc 59(4):452–459CrossRefPubMed
55.
go back to reference Acevedo A, Takhistov P, de la Rosa CP, Florián V (2014) Thermal gelation of aqueous hydroxypropylmethyl cellulose solutions with SDS and hydrophobic drug particles. Carbohydr Polym 102:74–90CrossRefPubMed Acevedo A, Takhistov P, de la Rosa CP, Florián V (2014) Thermal gelation of aqueous hydroxypropylmethyl cellulose solutions with SDS and hydrophobic drug particles. Carbohydr Polym 102:74–90CrossRefPubMed
56.
go back to reference Yoo YJ, Um IC (2013) Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology. Korea-Aust Rheol J 25(2):67–75CrossRef Yoo YJ, Um IC (2013) Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology. Korea-Aust Rheol J 25(2):67–75CrossRef
57.
go back to reference Barbucci L, Leone G, Vecchiullo A (2004) Novel carboxymethyl cellulose-based microporous hydrogels suitable for drug delivery. J Biomater Sci Polym Ed 15(5):607–619CrossRefPubMed Barbucci L, Leone G, Vecchiullo A (2004) Novel carboxymethyl cellulose-based microporous hydrogels suitable for drug delivery. J Biomater Sci Polym Ed 15(5):607–619CrossRefPubMed
58.
go back to reference Kono H (2014) Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethyleneglycol. Carbohydr Polym 106:84–93CrossRefPubMed Kono H (2014) Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethyleneglycol. Carbohydr Polym 106:84–93CrossRefPubMed
59.
go back to reference Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA (2008) Pharmaceutical significance of cellulose: a review. Express Polym Lett 2:758–778CrossRef Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA (2008) Pharmaceutical significance of cellulose: a review. Express Polym Lett 2:758–778CrossRef
60.
61.
62.
go back to reference Christie RJ, Findley DJ, Dunfee M, Hansen RD, Olsen SC, Grainger DW (2006) Photopolymerized hydrogel carriers for live vaccine ballistic delivery. Vaccine 24(9):1462–1469CrossRefPubMed Christie RJ, Findley DJ, Dunfee M, Hansen RD, Olsen SC, Grainger DW (2006) Photopolymerized hydrogel carriers for live vaccine ballistic delivery. Vaccine 24(9):1462–1469CrossRefPubMed
63.
go back to reference Tokumura T, Machida Y (2006) Preparation of amoxicillin intragastric buoyant sustained-release tablets and the dissolution characteristics. J Control Release 110(3):581–586CrossRefPubMed Tokumura T, Machida Y (2006) Preparation of amoxicillin intragastric buoyant sustained-release tablets and the dissolution characteristics. J Control Release 110(3):581–586CrossRefPubMed
64.
go back to reference Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57:1595–1639CrossRefPubMed Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57:1595–1639CrossRefPubMed
65.
go back to reference Huber HE, Dale LB, Christenson GL (1966) Utilization of hydrophilic gums for the control of drug release from tablet formulations I. Disintegration and dissolution behavior. J Pharm Sci 55:974–976CrossRefPubMed Huber HE, Dale LB, Christenson GL (1966) Utilization of hydrophilic gums for the control of drug release from tablet formulations I. Disintegration and dissolution behavior. J Pharm Sci 55:974–976CrossRefPubMed
66.
go back to reference Ford JL, Rubinstein MH, McCaul F, Hogan JE, Edgar PJ (1987) Importance of drug type, tablet shape and added diluents on drug release kinetics from hydroxypropyl methylcellulose matrix tablets. Int J Pharm 40:223–234CrossRef Ford JL, Rubinstein MH, McCaul F, Hogan JE, Edgar PJ (1987) Importance of drug type, tablet shape and added diluents on drug release kinetics from hydroxypropyl methylcellulose matrix tablets. Int J Pharm 40:223–234CrossRef
67.
go back to reference Palmer D, Levina M, Nokhodchi A, Douroumis D, Farrell T, Rajabi-Siahboomi A (2011) The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended release matrices. AAPS PharmSciTech 12(3):862–871CrossRefPubMedPubMedCentral Palmer D, Levina M, Nokhodchi A, Douroumis D, Farrell T, Rajabi-Siahboomi A (2011) The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended release matrices. AAPS PharmSciTech 12(3):862–871CrossRefPubMedPubMedCentral
68.
go back to reference Peppas NA (1997) Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 2:531–537CrossRef Peppas NA (1997) Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 2:531–537CrossRef
69.
go back to reference Vashist A, Ahmad S (2013) Hydrogels: smart materials for drug delivery. OJC 29:861–870 Vashist A, Ahmad S (2013) Hydrogels: smart materials for drug delivery. OJC 29:861–870
70.
go back to reference Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373CrossRefPubMedCentral Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373CrossRefPubMedCentral
71.
go back to reference El-Hag Ali A, Abd El-Rehim H, Kamal H, Hegazy D (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as specific delivery system. J Macromol Sci Pure Appl Chem 45:628–634CrossRef El-Hag Ali A, Abd El-Rehim H, Kamal H, Hegazy D (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as specific delivery system. J Macromol Sci Pure Appl Chem 45:628–634CrossRef
72.
go back to reference Camponeschi F, Atrei A, Rocchigiani G, Mencuccini L, Uva M, Barbucci R (2015) New formulations of polysaccharide-based hydrogels for drug release and tissue engineering. Gels 1:3–23CrossRefPubMedPubMedCentral Camponeschi F, Atrei A, Rocchigiani G, Mencuccini L, Uva M, Barbucci R (2015) New formulations of polysaccharide-based hydrogels for drug release and tissue engineering. Gels 1:3–23CrossRefPubMedPubMedCentral
73.
go back to reference Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80:66–74CrossRefPubMed Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80:66–74CrossRefPubMed
74.
go back to reference Trojani C, Weiss P, Michiels JF, Vinatier C, Guicheux J, Daculsi G, Gaudray P, Carle GF, Rochet N (2005) Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 26:5509–5517CrossRefPubMed Trojani C, Weiss P, Michiels JF, Vinatier C, Guicheux J, Daculsi G, Gaudray P, Carle GF, Rochet N (2005) Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 26:5509–5517CrossRefPubMed
75.
go back to reference Zaki NM, Awad GA, Mortada ND, Abd ElHady SS (2007) Enhanced bioavailability of metoclopramide HCl by intranasal administration of mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci 32:296–307CrossRefPubMed Zaki NM, Awad GA, Mortada ND, Abd ElHady SS (2007) Enhanced bioavailability of metoclopramide HCl by intranasal administration of mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci 32:296–307CrossRefPubMed
76.
go back to reference Wang X, Chi N, Tang X (2008) Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 70:735–740CrossRefPubMed Wang X, Chi N, Tang X (2008) Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 70:735–740CrossRefPubMed
77.
go back to reference Kirange RH, Chaudhari RB (2017) Utilizing mucoadhesive polymers for nasal drug delivery system. IJPSR 8(3):1012–1022 Kirange RH, Chaudhari RB (2017) Utilizing mucoadhesive polymers for nasal drug delivery system. IJPSR 8(3):1012–1022
78.
go back to reference Ugwoke MI, Kaufmann G, Verbeke N, Kinget R (2000) Intranasal bioavailability of apomorphine from carboxymethylcellulose-based drug delivery systems. Int J Pharm 202:125–131CrossRef Ugwoke MI, Kaufmann G, Verbeke N, Kinget R (2000) Intranasal bioavailability of apomorphine from carboxymethylcellulose-based drug delivery systems. Int J Pharm 202:125–131CrossRef
79.
go back to reference Ikeda K, Murata K, Kobayashi M, Noda K (1992) Enhancement of bioavailability of dopamine via nasal route in beagle dogs. Chem Pharm Bull 40:2155–2158CrossRef Ikeda K, Murata K, Kobayashi M, Noda K (1992) Enhancement of bioavailability of dopamine via nasal route in beagle dogs. Chem Pharm Bull 40:2155–2158CrossRef
80.
go back to reference Kapoor D, Vyas RB, Lad C, Patel M, Lal B (2015) Site specific drug delivery through nasal route using bioadhesive polymers. JDDT 5:1–9 Kapoor D, Vyas RB, Lad C, Patel M, Lal B (2015) Site specific drug delivery through nasal route using bioadhesive polymers. JDDT 5:1–9
81.
go back to reference Ugwoke MI, Sam E, Van Den Mooter G, Verbeke N, Kinget R (1999) Bioavailability of apomorphine following intranasal administration of mucoadhesive drug delivery systems in rabbits. Eur J Pharm Sci 9:213–219CrossRefPubMed Ugwoke MI, Sam E, Van Den Mooter G, Verbeke N, Kinget R (1999) Bioavailability of apomorphine following intranasal administration of mucoadhesive drug delivery systems in rabbits. Eur J Pharm Sci 9:213–219CrossRefPubMed
82.
go back to reference Quadir M, Zia H, Needham TE (1999) Toxicological implications of nasal formulations. Drug Deliv 6:227–242CrossRef Quadir M, Zia H, Needham TE (1999) Toxicological implications of nasal formulations. Drug Deliv 6:227–242CrossRef
83.
go back to reference Chaturvedi M, Kumar M, Pathak K (2011) A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Tech Res 2(4):215–222CrossRef Chaturvedi M, Kumar M, Pathak K (2011) A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Tech Res 2(4):215–222CrossRef
84.
go back to reference Paulsson M (2001) Controlled release gel formulation for mucosal drug delivery. ACTA Univ Upsaliensin Uppasla 7:9–21 Paulsson M (2001) Controlled release gel formulation for mucosal drug delivery. ACTA Univ Upsaliensin Uppasla 7:9–21
85.
go back to reference Malik NS, Ahmad M, Minhas MU (2017) Cross-linked β-cyclodextrin and carboxymethylcellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 12(2):1–17CrossRef Malik NS, Ahmad M, Minhas MU (2017) Cross-linked β-cyclodextrin and carboxymethylcellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 12(2):1–17CrossRef
86.
go back to reference Amoli DM, Kamyar P (2017) Magnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin. Nanomed Res J 2(1):18–27 Amoli DM, Kamyar P (2017) Magnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin. Nanomed Res J 2(1):18–27
87.
go back to reference Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ (2011) Macrophages in skin injury and repair. Immunobiology 216:753–762CrossRef Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ (2011) Macrophages in skin injury and repair. Immunobiology 216:753–762CrossRef
88.
go back to reference Heilmann S, Küchler S, Wischke C, Lendlein A, Stein C, Schäfer-Korting M (2013) A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int J Pharm 444:96–102CrossRefPubMed Heilmann S, Küchler S, Wischke C, Lendlein A, Stein C, Schäfer-Korting M (2013) A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int J Pharm 444:96–102CrossRefPubMed
89.
go back to reference Yang X, Zhu Z, Liu Q, Chen X, Ma M (2008) Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by gama-irradiation followed by freeze-thawing. Radiat Phys Chem 77:954–960CrossRef Yang X, Zhu Z, Liu Q, Chen X, Ma M (2008) Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by gama-irradiation followed by freeze-thawing. Radiat Phys Chem 77:954–960CrossRef
90.
go back to reference Boateng SJ, Matthews HK, Stevens NEH, Eccleston MG (2008) Wound healing dressing and drug delivery system: a review. J Pharm Sci 97(8):2892–2923CrossRefPubMed Boateng SJ, Matthews HK, Stevens NEH, Eccleston MG (2008) Wound healing dressing and drug delivery system: a review. J Pharm Sci 97(8):2892–2923CrossRefPubMed
91.
go back to reference Lloyd LL, Kennedy JF, Methacanon P, Paterson M, Knill CJ (1998) Carbohydrate polymers as wound management aids. Carbohydr Polym 37:315–322CrossRef Lloyd LL, Kennedy JF, Methacanon P, Paterson M, Knill CJ (1998) Carbohydrate polymers as wound management aids. Carbohydr Polym 37:315–322CrossRef
92.
go back to reference Wang J, Wei J (2017) Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings. Mater Sci Eng C Mater Biol Appl 80:460–467CrossRefPubMed Wang J, Wei J (2017) Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings. Mater Sci Eng C Mater Biol Appl 80:460–467CrossRefPubMed
93.
go back to reference Ogawa A, Nakayama S, Uehara M, Mori Y, Takahashi M, Aiba T, Kurosaki Y (2014) Pharmaceutical properties of a low-substituted hydroxypropyl cellulose (L-HPC) hydrogel as a novel external dressing. Int J Pharm 477:546–552CrossRefPubMed Ogawa A, Nakayama S, Uehara M, Mori Y, Takahashi M, Aiba T, Kurosaki Y (2014) Pharmaceutical properties of a low-substituted hydroxypropyl cellulose (L-HPC) hydrogel as a novel external dressing. Int J Pharm 477:546–552CrossRefPubMed
94.
go back to reference Amrosio L (2011) Superabsorbent cellulose-based hydrogels for biomedical applications. In: Rimmer S (ed) Biomedical hydrogels/biochemistry, manufacture and medical applications. Woodhead Publ Ltd, pp 25–46 Amrosio L (2011) Superabsorbent cellulose-based hydrogels for biomedical applications. In: Rimmer S (ed) Biomedical hydrogels/biochemistry, manufacture and medical applications. Woodhead Publ Ltd, pp 25–46
95.
go back to reference Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr. (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145–151CrossRefPubMed Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr. (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145–151CrossRefPubMed
96.
go back to reference Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C Mater Biol Appl 34:54–61CrossRefPubMed Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C Mater Biol Appl 34:54–61CrossRefPubMed
97.
go back to reference Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9(4):119–136CrossRefPubMedCentral Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9(4):119–136CrossRefPubMedCentral
98.
go back to reference Bajpai SK, Pathak V, Soni B (2015) Minocycline-loaded cellulose nano whiskers/poly(sodium acrylate) composite hydrogel films as wound dressing. Int J Biol Macromol 79:76–85CrossRefPubMed Bajpai SK, Pathak V, Soni B (2015) Minocycline-loaded cellulose nano whiskers/poly(sodium acrylate) composite hydrogel films as wound dressing. Int J Biol Macromol 79:76–85CrossRefPubMed
99.
go back to reference Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538CrossRef Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538CrossRef
100.
go back to reference Czaja WK, Young DJ, Kawecki M, Brown RM (2006) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef Czaja WK, Young DJ, Kawecki M, Brown RM (2006) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef
101.
go back to reference Murosaki T, Gong JP (2010) Double network hydrogels as tough, durable tissue substitutes. In: Ottenbrite RM, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 285–302CrossRef Murosaki T, Gong JP (2010) Double network hydrogels as tough, durable tissue substitutes. In: Ottenbrite RM, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 285–302CrossRef
102.
go back to reference Laçin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27CrossRefPubMed Laçin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27CrossRefPubMed
103.
go back to reference Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320CrossRefPubMed Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320CrossRefPubMed
104.
go back to reference Moraes PRF de S, Saska S, Barud H, Lima LR de, Martins V da CA, Plepis AM de G, Ribeiro SJL, Gaspar AMM (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mat Res 19:106–116CrossRef Moraes PRF de S, Saska S, Barud H, Lima LR de, Martins V da CA, Plepis AM de G, Ribeiro SJL, Gaspar AMM (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mat Res 19:106–116CrossRef
105.
go back to reference Serafica G, Mormino R, Oster AG, Lentz EK, Koehler PK (2008) Microbial cellulose wound dressing for treating chronic wound. US Patent 7,390,499 B2 Serafica G, Mormino R, Oster AG, Lentz EK, Koehler PK (2008) Microbial cellulose wound dressing for treating chronic wound. US Patent 7,390,499 B2
106.
go back to reference Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286CrossRefPubMed Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286CrossRefPubMed
107.
go back to reference Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264CrossRefPubMed Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264CrossRefPubMed
108.
go back to reference Nayak S, Kundu SC (2014) Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material. J Biomed Mater Res A 102:1928–1940CrossRefPubMed Nayak S, Kundu SC (2014) Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material. J Biomed Mater Res A 102:1928–1940CrossRefPubMed
109.
go back to reference Choi DS, Kim S, Lim YM, Gwon HJ, Park JS, Nho YC, Kwon J (2012) Hydrogel incorporated with chestnut honey accelerates wound healing and promotes early HO-1 protein expression in diabetic (db/db) mice. J Tissue Eng Regen Med 9:36–42CrossRef Choi DS, Kim S, Lim YM, Gwon HJ, Park JS, Nho YC, Kwon J (2012) Hydrogel incorporated with chestnut honey accelerates wound healing and promotes early HO-1 protein expression in diabetic (db/db) mice. J Tissue Eng Regen Med 9:36–42CrossRef
110.
go back to reference Rakhshaei R, Namazi H (2017) A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C Mater Biol Appl 73:456–464CrossRefPubMed Rakhshaei R, Namazi H (2017) A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C Mater Biol Appl 73:456–464CrossRefPubMed
111.
go back to reference Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRef Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRef
113.
go back to reference Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, Payne WG, Smith DJ, Robson MC (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4(2):114–122CrossRefPubMedPubMedCentral Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, Payne WG, Smith DJ, Robson MC (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4(2):114–122CrossRefPubMedPubMedCentral
116.
go back to reference Moura LIF, Dias AMA, Carvalho E, De Sousa HC (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment – a review. Acta Biomater 9:7093–7114CrossRefPubMed Moura LIF, Dias AMA, Carvalho E, De Sousa HC (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment – a review. Acta Biomater 9:7093–7114CrossRefPubMed
117.
118.
go back to reference Akter F (2016) Tissue engineering made easy. Mica Haley, pp 1–2 Akter F (2016) Tissue engineering made easy. Mica Haley, pp 1–2
119.
go back to reference Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveria JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030 Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveria JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030
120.
go back to reference Brien FJO (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95CrossRef Brien FJO (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95CrossRef
123.
go back to reference Meyer U, Wiesman HP (2006) Bone and cartilage engineering. Springer, New York, pp 7–8 Meyer U, Wiesman HP (2006) Bone and cartilage engineering. Springer, New York, pp 7–8
124.
go back to reference Kaliva M, Chatzinikolaidou M, Vamvakaki M (2017) Applications of smart multifunctional tissue engineering scaffolds. In: Wang Q (ed) Smart materials for tissue engineering. Royal Society of Chemistry UK, pp 1–38 Kaliva M, Chatzinikolaidou M, Vamvakaki M (2017) Applications of smart multifunctional tissue engineering scaffolds. In: Wang Q (ed) Smart materials for tissue engineering. Royal Society of Chemistry UK, pp 1–38
125.
go back to reference Fricaina JC, Granjac PL, Barbosa MA, de Jéso B, Barthe N, Baquey C (2002) Cellulose phosphates as biomaterials. In vivo biocompatibility studies. Biomaterials 23:971–980CrossRef Fricaina JC, Granjac PL, Barbosa MA, de Jéso B, Barthe N, Baquey C (2002) Cellulose phosphates as biomaterials. In vivo biocompatibility studies. Biomaterials 23:971–980CrossRef
126.
go back to reference Sukul M, Min Y, Lee S, Lee B (2015) Osteogenic potential of simvastatin loaded gelatin-nanofibrillar cellulose-β tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. Eur Polym J 73:308–323CrossRef Sukul M, Min Y, Lee S, Lee B (2015) Osteogenic potential of simvastatin loaded gelatin-nanofibrillar cellulose-β tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. Eur Polym J 73:308–323CrossRef
127.
go back to reference Fellah BH, Weiss P, Gauthier O, Rouillon T, Pilet P, Daculsi G, Layrolle P (2006) Bone repair using a new injectable self-crosslinkable bone substitute. J Orthop Res 24:628–635CrossRefPubMed Fellah BH, Weiss P, Gauthier O, Rouillon T, Pilet P, Daculsi G, Layrolle P (2006) Bone repair using a new injectable self-crosslinkable bone substitute. J Orthop Res 24:628–635CrossRefPubMed
128.
go back to reference Sohier J, Corre P, Weiss P, Layrolle P (2010) Hydrogel/calcium phosphate composites require specific properties for three-dimensional culture of human bone mesenchymal cells. Acta Biomater 6:2932–2939CrossRefPubMed Sohier J, Corre P, Weiss P, Layrolle P (2010) Hydrogel/calcium phosphate composites require specific properties for three-dimensional culture of human bone mesenchymal cells. Acta Biomater 6:2932–2939CrossRefPubMed
129.
go back to reference Struillou X, Boutigny H, Badran Z, Fellah BH, Gauthier O, Sourice S, Pilet P, Rouillon T, Layrolle P, Weiss P, Soueidan A (2011) Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. J Mater Sci Mater Med 22:1707–1717CrossRefPubMed Struillou X, Boutigny H, Badran Z, Fellah BH, Gauthier O, Sourice S, Pilet P, Rouillon T, Layrolle P, Weiss P, Soueidan A (2011) Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. J Mater Sci Mater Med 22:1707–1717CrossRefPubMed
130.
go back to reference Favi PM, Benson RS, Neilsen NR, Hammonds RL, Bates CC, Stephens CP, Dhar MS (2013) Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater Sci Eng C Mater Bio Appl 33:1935–1944CrossRef Favi PM, Benson RS, Neilsen NR, Hammonds RL, Bates CC, Stephens CP, Dhar MS (2013) Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater Sci Eng C Mater Bio Appl 33:1935–1944CrossRef
131.
go back to reference Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R (2013) Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A 102(5):1568–1579CrossRefPubMed Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R (2013) Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A 102(5):1568–1579CrossRefPubMed
132.
go back to reference Chun YY, Wang JK, Tan NS, Chan PP, Tan TT, Choong C (2016) A periosteum-inspired 3D hydrogel-bioceramic composite for enhanced bone regeneration. Macromol Biosci 16:276–287CrossRefPubMed Chun YY, Wang JK, Tan NS, Chan PP, Tan TT, Choong C (2016) A periosteum-inspired 3D hydrogel-bioceramic composite for enhanced bone regeneration. Macromol Biosci 16:276–287CrossRefPubMed
133.
go back to reference Park M, Lee D, Shin S, Hyun J (2015) Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering. Colloids Surf B Biointerfaces 130:222–228CrossRefPubMed Park M, Lee D, Shin S, Hyun J (2015) Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering. Colloids Surf B Biointerfaces 130:222–228CrossRefPubMed
134.
go back to reference Ahmadi R, Burns AJ, De Bruijn JD (2010) Chitosan-based hydrogels do not induce angiogenesis. J Tissue Eng Regen Med 4:309–315CrossRefPubMed Ahmadi R, Burns AJ, De Bruijn JD (2010) Chitosan-based hydrogels do not induce angiogenesis. J Tissue Eng Regen Med 4:309–315CrossRefPubMed
135.
go back to reference Fan M, Yan J, Tan H, Ben D, He Q, Huang Z, Hu X (2014) Nanostructured gel scaffolds for osteogenesis through biological assembly of biopolymers via specific nucleobase pairing. Macromol Biosci 14:1521–1527CrossRefPubMed Fan M, Yan J, Tan H, Ben D, He Q, Huang Z, Hu X (2014) Nanostructured gel scaffolds for osteogenesis through biological assembly of biopolymers via specific nucleobase pairing. Macromol Biosci 14:1521–1527CrossRefPubMed
137.
go back to reference Park S, Lih E, Park K, Joung YK, Han DK (2017) Biopolymer-based functional composites for medical applications. Prog Polym Sci 68:77–105CrossRef Park S, Lih E, Park K, Joung YK, Han DK (2017) Biopolymer-based functional composites for medical applications. Prog Polym Sci 68:77–105CrossRef
138.
go back to reference Balakrishnan B, Joshi N, Banerjee R (2013) Borate aided Schiff’s base formation yields in situ gelling hydrogels for cartilage regeneration. J Mater Chem B 1:5564–5577CrossRefPubMed Balakrishnan B, Joshi N, Banerjee R (2013) Borate aided Schiff’s base formation yields in situ gelling hydrogels for cartilage regeneration. J Mater Chem B 1:5564–5577CrossRefPubMed
139.
go back to reference Milcovich G, Antunes FE, Farra R, Grassi G, Grassi M, Asaro F (2017) Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages. Int J Biol Macromol 102:796–804CrossRefPubMed Milcovich G, Antunes FE, Farra R, Grassi G, Grassi M, Asaro F (2017) Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages. Int J Biol Macromol 102:796–804CrossRefPubMed
140.
go back to reference Yin N, Stilwell MD, Santos TM, Wang H, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138CrossRefPubMed Yin N, Stilwell MD, Santos TM, Wang H, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138CrossRefPubMed
141.
go back to reference Ávila HM, Schwarz S, Feldmann EM, Mantas A, von Bomhard A, Gatenholm P, Rotter N (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435CrossRef Ávila HM, Schwarz S, Feldmann EM, Mantas A, von Bomhard A, Gatenholm P, Rotter N (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435CrossRef
142.
go back to reference Rehmani SS, Bhora FY (2016) Current state of 3D printing in tissue engineering. J 3D Print Med 1(2):10–13 Rehmani SS, Bhora FY (2016) Current state of 3D printing in tissue engineering. J 3D Print Med 1(2):10–13
143.
go back to reference Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose−alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496CrossRefPubMed Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose−alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496CrossRefPubMed
144.
go back to reference Rederstorff E, Rethore G, Weiss P, Sourice S, Beck-Cormier S, Mathieu E, Maillasson M, Jacques Y, Colliec-Jouault S, Fellah BH, Guicheux J, Vinatier C (2018) Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering. J Tissue Eng Regen Med 11:1152–1164CrossRef Rederstorff E, Rethore G, Weiss P, Sourice S, Beck-Cormier S, Mathieu E, Maillasson M, Jacques Y, Colliec-Jouault S, Fellah BH, Guicheux J, Vinatier C (2018) Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering. J Tissue Eng Regen Med 11:1152–1164CrossRef
145.
go back to reference Reza AT, Nicoll SB (2010) Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells. Acta Biomater 6:179–186CrossRefPubMed Reza AT, Nicoll SB (2010) Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells. Acta Biomater 6:179–186CrossRefPubMed
146.
go back to reference Castro C, Zuluaga R, Rojas OJ, Filpponen I, Orelma H, Londoño M, Betancourt S, Gañán P (2015) Highly percolated poly(vinyl alcohol) and bacterial nanocellulose synthesized in situ by physical- crosslinking: exploiting polymer synergies for biomedical nanocomposites. RSC Adv 5:90742–90749CrossRef Castro C, Zuluaga R, Rojas OJ, Filpponen I, Orelma H, Londoño M, Betancourt S, Gañán P (2015) Highly percolated poly(vinyl alcohol) and bacterial nanocellulose synthesized in situ by physical- crosslinking: exploiting polymer synergies for biomedical nanocomposites. RSC Adv 5:90742–90749CrossRef
147.
go back to reference Patchan M, Graham JL, Xia Z, Maranchi JP, McCally R, Schein O, Elisseeff JH, Trexler MM (2013) Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater Sci Eng C 33:3069–3076CrossRef Patchan M, Graham JL, Xia Z, Maranchi JP, McCally R, Schein O, Elisseeff JH, Trexler MM (2013) Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater Sci Eng C 33:3069–3076CrossRef
148.
go back to reference Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218CrossRef Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218CrossRef
149.
go back to reference Recouvreux DOS, Rambo CR, Berti FV, Carminatti CA, Antônio RV, Porto LM (2011) Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater Sci Eng C 31:151–157CrossRef Recouvreux DOS, Rambo CR, Berti FV, Carminatti CA, Antônio RV, Porto LM (2011) Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater Sci Eng C 31:151–157CrossRef
150.
go back to reference Xu D, Fan L, Gao L, Xiong Y, Wang Y, Ye Q, Yu A, Dai H, Yin Y, Cai J, Zhang L (2016) Micro-nanostructured polyaniline assembled in cellulose matrix via interfacial polymerization for applications in nerve regeneration. ACS Appl Mater Interfaces 8:17090–17097CrossRefPubMed Xu D, Fan L, Gao L, Xiong Y, Wang Y, Ye Q, Yu A, Dai H, Yin Y, Cai J, Zhang L (2016) Micro-nanostructured polyaniline assembled in cellulose matrix via interfacial polymerization for applications in nerve regeneration. ACS Appl Mater Interfaces 8:17090–17097CrossRefPubMed
151.
go back to reference Gold GT, Varma DM, Harbottle D, Gupta MS, Stalling SS, Taub PJ, Nicoll SB (2014) Injectable redox-polymerized methylcellulose hydrogels as potential soft tissue filler materials. J Biomed Mater Res A 102(12):4536–4544PubMed Gold GT, Varma DM, Harbottle D, Gupta MS, Stalling SS, Taub PJ, Nicoll SB (2014) Injectable redox-polymerized methylcellulose hydrogels as potential soft tissue filler materials. J Biomed Mater Res A 102(12):4536–4544PubMed
152.
go back to reference Tang J, Bao L, Li X, Hong FF (2015) Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J Mater Chem B 3:8537–8547CrossRefPubMed Tang J, Bao L, Li X, Hong FF (2015) Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J Mater Chem B 3:8537–8547CrossRefPubMed
153.
go back to reference Yano S, Mori M, Teramoto N, Iisaka M, Suzuki N, Noto M, Kaimoto Y, Kakimoto M, Yamada M, Shiratsuchi E, Shimasaki T, Shibata M (2015) Preparation of photocrosslinked fish elastin polypeptide/microfibrillated cellulose composite gels with elastic properties for biomaterial applications. Mar Drugs 13(1):338–353CrossRefPubMedPubMedCentral Yano S, Mori M, Teramoto N, Iisaka M, Suzuki N, Noto M, Kaimoto Y, Kakimoto M, Yamada M, Shiratsuchi E, Shimasaki T, Shibata M (2015) Preparation of photocrosslinked fish elastin polypeptide/microfibrillated cellulose composite gels with elastic properties for biomaterial applications. Mar Drugs 13(1):338–353CrossRefPubMedPubMedCentral
154.
go back to reference He M, Zhao Y, Duan J, Wang Z, Chen Y, Zhang L (2014) Fast contact of solid−liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interfaces 6(3):1872–1878CrossRefPubMed He M, Zhao Y, Duan J, Wang Z, Chen Y, Zhang L (2014) Fast contact of solid−liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interfaces 6(3):1872–1878CrossRefPubMed
155.
go back to reference Millon LE, Wan WK (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79(2):245–253CrossRefPubMed Millon LE, Wan WK (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79(2):245–253CrossRefPubMed
156.
go back to reference Hoo SP, Loh L, Yue Z, Fu J, Tan TTY, Choong C, Chan PPY (2013) Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. J Mater Chem B 1:3107–3117CrossRefPubMed Hoo SP, Loh L, Yue Z, Fu J, Tan TTY, Choong C, Chan PPY (2013) Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. J Mater Chem B 1:3107–3117CrossRefPubMed
157.
go back to reference Weng H, Zhou J, Tang L, Hu Z (2017) Tissue responses to thermally-responsive hydrogel nanoparticles. J Biomater Sci Polym Ed 15:1167–1180CrossRef Weng H, Zhou J, Tang L, Hu Z (2017) Tissue responses to thermally-responsive hydrogel nanoparticles. J Biomater Sci Polym Ed 15:1167–1180CrossRef
158.
go back to reference Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67:1016–1024CrossRefPubMed Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67:1016–1024CrossRefPubMed
159.
go back to reference Sannino A, Pappada` S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46:11206–11212CrossRef Sannino A, Pappada` S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46:11206–11212CrossRef
160.
go back to reference Jin R, Dijkstra PJ (2010) Hydrogels for tissue engineering applications. In: Ottenbrite RM, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 203–225CrossRef Jin R, Dijkstra PJ (2010) Hydrogels for tissue engineering applications. In: Ottenbrite RM, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 203–225CrossRef
161.
go back to reference Luo K, Yang Y, Shao Z (2016) Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv Funct Mater 26:872–880CrossRef Luo K, Yang Y, Shao Z (2016) Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv Funct Mater 26:872–880CrossRef
162.
go back to reference Li L, Lin Z, Yang X, Wan Z, Cui S (2009) A novel cellulose hydrogel prepared from its ionic liquid solution. Chin Sci Bull 54:1622–1625CrossRef Li L, Lin Z, Yang X, Wan Z, Cui S (2009) A novel cellulose hydrogel prepared from its ionic liquid solution. Chin Sci Bull 54:1622–1625CrossRef
163.
go back to reference Aizad S, Yahaya BH, Zubairi SI (2015) Carboxy-methyl-cellulose (CMC) hydrogel-filled 3-D scaffold: preliminary study through a 3-D antiproliferative activity of Centella asiatica extract. In: AIP conference proceedings, vol 1678(1), Selangor 15–16 Apr 2015 Aizad S, Yahaya BH, Zubairi SI (2015) Carboxy-methyl-cellulose (CMC) hydrogel-filled 3-D scaffold: preliminary study through a 3-D antiproliferative activity of Centella asiatica extract. In: AIP conference proceedings, vol 1678(1), Selangor 15–16 Apr 2015
164.
go back to reference Bayramoglu G, Kayaman-Apohan N, Akcakaya H, Kahraman MV, Kuruca SE, Gunur A (2010) Preparation of collagen modified photopolymers: a new type of biodegradable gel for cell growth. J Mater Sci Mater Med 21:761–775CrossRefPubMed Bayramoglu G, Kayaman-Apohan N, Akcakaya H, Kahraman MV, Kuruca SE, Gunur A (2010) Preparation of collagen modified photopolymers: a new type of biodegradable gel for cell growth. J Mater Sci Mater Med 21:761–775CrossRefPubMed
165.
go back to reference Zhu L, Qiu J, Sakai E, Zang L, Yu Y, Ito K, Liu P, Kang F (2017) Design of a rubbery carboxymethyl cellulose/polyacrylic acid hydrogel via visible-light-triggered polymerization. Macromol Mater Eng 302:1–9 Zhu L, Qiu J, Sakai E, Zang L, Yu Y, Ito K, Liu P, Kang F (2017) Design of a rubbery carboxymethyl cellulose/polyacrylic acid hydrogel via visible-light-triggered polymerization. Macromol Mater Eng 302:1–9
166.
go back to reference Ren LZ, Ren PG, Zhang XL, Sun ZF, Zhang Y (2014) Preparation and mechanical properties of regenerated cellulose/poly(vinyl-alcohol) physical composite hydrogel. Compos Interfaces 21:853–867CrossRef Ren LZ, Ren PG, Zhang XL, Sun ZF, Zhang Y (2014) Preparation and mechanical properties of regenerated cellulose/poly(vinyl-alcohol) physical composite hydrogel. Compos Interfaces 21:853–867CrossRef
167.
go back to reference Peng Z, Chen F (2011) Hydroxyethyl cellulose-based hydrogels with various pore sizes prepared by freeze-drying. J Macromol Sci B 50:340–349CrossRef Peng Z, Chen F (2011) Hydroxyethyl cellulose-based hydrogels with various pore sizes prepared by freeze-drying. J Macromol Sci B 50:340–349CrossRef
168.
go back to reference Guan Y, Chen J, Qi X, Chen G, Peng F, Sun R (2015) Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property. Ind Eng Chem Res 54:7393–7400CrossRef Guan Y, Chen J, Qi X, Chen G, Peng F, Sun R (2015) Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property. Ind Eng Chem Res 54:7393–7400CrossRef
169.
go back to reference Chen J, Park H, Park K (1998) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44:53–62CrossRef Chen J, Park H, Park K (1998) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44:53–62CrossRef
170.
go back to reference Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64CrossRefPubMed Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64CrossRefPubMed
171.
go back to reference Guan Y, Zhang Y (2016) Nanostructured hydrogels for diabetic management. In: Zhao Y, Shen Y (eds) Biomedical nanomaterials. Wiley-VCH Verlag, pp 387–412 Guan Y, Zhang Y (2016) Nanostructured hydrogels for diabetic management. In: Zhao Y, Shen Y (eds) Biomedical nanomaterials. Wiley-VCH Verlag, pp 387–412
172.
go back to reference Zhao L, Wang L, Zhang Y, Xiao S, Bi F, Zhao J, Gai G, Ding J (2017) Glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment. Polymers 9(7):255–276CrossRefPubMedCentral Zhao L, Wang L, Zhang Y, Xiao S, Bi F, Zhao J, Gai G, Ding J (2017) Glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment. Polymers 9(7):255–276CrossRefPubMedCentral
173.
go back to reference Ravaine V, Ancla C, Catargi B (2008) Chemically controlled closed-loop insulin delivery. J Control Release 132:2–11CrossRefPubMed Ravaine V, Ancla C, Catargi B (2008) Chemically controlled closed-loop insulin delivery. J Control Release 132:2–11CrossRefPubMed
174.
go back to reference Risbud MV, Bhonde RR (2001) Islet immunoisolation: experience with biopolymers. J Biomater Sci Polym Ed 12:1243–1252CrossRefPubMed Risbud MV, Bhonde RR (2001) Islet immunoisolation: experience with biopolymers. J Biomater Sci Polym Ed 12:1243–1252CrossRefPubMed
175.
go back to reference Champaneria MC (2016) A complete history of breast reconstruction. In: Shiffman MA (ed) Breast reconstruction. Springer, New York, pp 3–39CrossRef Champaneria MC (2016) A complete history of breast reconstruction. In: Shiffman MA (ed) Breast reconstruction. Springer, New York, pp 3–39CrossRef
176.
go back to reference Maxwell GP, Gabriel A (2013) Breast augmentation. In: Neligan PC, Grotting JC (eds) Plastic surgery breast, vol 5, 3rd ed. Elsevier Saunders, pp 13–38 Maxwell GP, Gabriel A (2013) Breast augmentation. In: Neligan PC, Grotting JC (eds) Plastic surgery breast, vol 5, 3rd ed. Elsevier Saunders, pp 13–38
177.
go back to reference Baumann L, Blyumin M, Saghari S (2009) Dermal fillers. In: Baumann L, Saghari S, Weisberg E (eds) Cosmetic dermatology principles and practice. McGraw-Hill Co, pp 191–211 Baumann L, Blyumin M, Saghari S (2009) Dermal fillers. In: Baumann L, Saghari S, Weisberg E (eds) Cosmetic dermatology principles and practice. McGraw-Hill Co, pp 191–211
178.
go back to reference Leonardis M, Palange A, Dornelles RF, Hund F (2010) Use of cross-linked carboxymethyl cellulose for soft-tissue augmentation: preliminary clinical studies. Clin Interv Aging 5:317–322CrossRefPubMedPubMedCentral Leonardis M, Palange A, Dornelles RF, Hund F (2010) Use of cross-linked carboxymethyl cellulose for soft-tissue augmentation: preliminary clinical studies. Clin Interv Aging 5:317–322CrossRefPubMedPubMedCentral
179.
go back to reference Wang Z, Fan X, He M, Chen Z, Wang Y, Ye Q, Zhang H, Zhang L (2014) Construction of cellulose-phosphor hybrid hydrogels and their application for bioimaging. J Mater Chem B 2:7559–7566CrossRefPubMed Wang Z, Fan X, He M, Chen Z, Wang Y, Ye Q, Zhang H, Zhang L (2014) Construction of cellulose-phosphor hybrid hydrogels and their application for bioimaging. J Mater Chem B 2:7559–7566CrossRefPubMed
Metadata
Title
Cellulose-Based Hydrogels as Biomaterials
Authors
Serdar Sezer
İsa Şahin
Kevser Öztürk
Vildan Şanko
Zeynep Koçer
Ümran Aydemir Sezer
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_40

Premium Partners