Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Challenge of High Performance Bandgap Reference Design in Nanoscale CMOS Technology

Authors : Zhang Jun-an, Li Guangjun, Zhang Rui-tao, Yang Yu-jun, Li Xi, Yan Bo, Fu Dong-bing, Luo Pu

Published in: Outlook and Challenges of Nano Devices, Sensors, and MEMS

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To design a high performance bandgap reference circuit in nanoscale CMOS technology becomes a great challenge. Many negative effects of nanoscale CMOS technology in high performance bandgap reference design are discussed in this chapter. A bandgap reference circuit design with both voltage output and current output is presented also. In this design, low threshold voltage MOSfet have been utilized in this design to ensure the circuit at suitable DC operation points under extreme low temperature. Operational transconductance amplifier (OTA) has been used to achieve high DC power supply rejection rate (PSRR). Two opposite temperature coefficient resistors have been connected in series to obtain a one-order temperature independent resistor which also achieves a weak curvature compensation effect for reference voltage’s generation. This bandgap reference is implemented in a 65 nm CMOS technology, occupies 0.75 × 0. 67 mm including bond pads, Measured results show that this circuit can operate at supply voltage from 1.1 to 1.3 V, and the temperature coefficient of voltage output is 30 ppm/°C with 60 dB PSRR (DC, 30°C), and the temperature coefficient of current output is 52 ppm/°C with 70 dB PSRR (DC, 30°C), among −55°C to 125°C without any trimming or calibration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Banba, H. Shiga, A. Umezawa, et al., A CMOS bandgap reference circuit with sub 1-V operation. IEEE J. Solid State Circuits 34(5), 670–674 (1999)CrossRef H. Banba, H. Shiga, A. Umezawa, et al., A CMOS bandgap reference circuit with sub 1-V operation. IEEE J. Solid State Circuits 34(5), 670–674 (1999)CrossRef
2.
go back to reference M.D. Ker, J.S. Chen, C.Y. Chu, A CMOS bandgap reference circuit for sub 1-V operation without using extra low-threshold voltage device. IEICE Trans. Electron. E88(11), 2150–2155 (2005)CrossRef M.D. Ker, J.S. Chen, C.Y. Chu, A CMOS bandgap reference circuit for sub 1-V operation without using extra low-threshold voltage device. IEICE Trans. Electron. E88(11), 2150–2155 (2005)CrossRef
3.
go back to reference J. Doyle, Y.J. Lee, Y.B. Kim, et al., A CMOS subbandgap reference circuit with 1-V power supply voltage. IEEE J. Solid-State Circuits 39(1), 252–254 (2004)CrossRef J. Doyle, Y.J. Lee, Y.B. Kim, et al., A CMOS subbandgap reference circuit with 1-V power supply voltage. IEEE J. Solid-State Circuits 39(1), 252–254 (2004)CrossRef
4.
go back to reference T. Ytterdal, CMOS bandgap voltage reference circuit for supply voltages down to 0.6 V, IEEE. Electron. Lett. 39(20), 1427–1428 (2003)CrossRef T. Ytterdal, CMOS bandgap voltage reference circuit for supply voltages down to 0.6 V, IEEE. Electron. Lett. 39(20), 1427–1428 (2003)CrossRef
5.
go back to reference A.-J. Annema, Low-power bandgap references featuring DTMOSTs. IEEE J. Solid State Circuits 34(7), 949–955 (1999)CrossRef A.-J. Annema, Low-power bandgap references featuring DTMOSTs. IEEE J. Solid State Circuits 34(7), 949–955 (1999)CrossRef
6.
go back to reference M. Ugajin, K. Suzuki, T. Tsukahara, A 0.6 V supply, voltage-reference circuit based on threshold-voltage summation architecture in fully depleted CMOS/SOI. IEICE Trans. Electron. E85(8), 1588–1595 (2002) M. Ugajin, K. Suzuki, T. Tsukahara, A 0.6 V supply, voltage-reference circuit based on threshold-voltage summation architecture in fully depleted CMOS/SOI. IEICE Trans. Electron. E85(8), 1588–1595 (2002)
7.
go back to reference J.W. Kim, B. Murmann, R. Dutton, in International Symposium on Quality Electronic Design (ISQED). Hybrid Integration of bandgap reference circuits using silicon ICs and germaninum devices (Stanford University, San Jose, CA, 2008), pp. 429–432 J.W. Kim, B. Murmann, R. Dutton, in International Symposium on Quality Electronic Design (ISQED). Hybrid Integration of bandgap reference circuits using silicon ICs and germaninum devices (Stanford University, San Jose, CA, 2008), pp. 429–432
8.
go back to reference K.N. Leung, P.K.T. Mok, A Sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device. IEEE J. Solid State Circuits 37(4), 526–530 (2002)CrossRef K.N. Leung, P.K.T. Mok, A Sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device. IEEE J. Solid State Circuits 37(4), 526–530 (2002)CrossRef
9.
go back to reference G. Giustolisi, G. Palumbo, M. Criscione, F. Cutrì, A low-voltage low-power voltage reference based on subthreshold MOSFETS. IEEE J. Solid State Circuits 38(1), 151–154 (2003)CrossRef G. Giustolisi, G. Palumbo, M. Criscione, F. Cutrì, A low-voltage low-power voltage reference based on subthreshold MOSFETS. IEEE J. Solid State Circuits 38(1), 151–154 (2003)CrossRef
10.
go back to reference T. Raymond, Perry, S.H. Lewis, A. Paul Brokaw, T.R. Viswanathan, A 1.4 V supply CMOS fractional bandgap reference. IEEE J. Solid State Circuits 42(10), 2180–2186 (2007)CrossRef T. Raymond, Perry, S.H. Lewis, A. Paul Brokaw, T.R. Viswanathan, A 1.4 V supply CMOS fractional bandgap reference. IEEE J. Solid State Circuits 42(10), 2180–2186 (2007)CrossRef
11.
go back to reference K. Sanborn, D. Ma, A. Paul Brokaw, V. Ivanov, A sub-1-V low-noise bandgap voltage reference. IEEE J. Solid State Circuits 42(11), 2466–2481 (2007)CrossRef K. Sanborn, D. Ma, A. Paul Brokaw, V. Ivanov, A sub-1-V low-noise bandgap voltage reference. IEEE J. Solid State Circuits 42(11), 2466–2481 (2007)CrossRef
12.
go back to reference V. Ivanov, R. Brederlow, J. Gerber, An ultra low power bandgap operational at supply from 0.75 V. IEEE J. Solid State Circuits 47(7), 1515–1523 (2012)CrossRef V. Ivanov, R. Brederlow, J. Gerber, An ultra low power bandgap operational at supply from 0.75 V. IEEE J. Solid State Circuits 47(7), 1515–1523 (2012)CrossRef
13.
go back to reference B. Ma, F. Yu, A novel 1.2–V 4.5-ppm/°C curvature-compensated CMOS bandgap reference. IEEE Trans. Circuits Syst. I Regul. Pap. 61(4), 1026–1035 (2014)MathSciNetCrossRef B. Ma, F. Yu, A novel 1.2–V 4.5-ppm/°C curvature-compensated CMOS bandgap reference. IEEE Trans. Circuits Syst. I Regul. Pap. 61(4), 1026–1035 (2014)MathSciNetCrossRef
14.
go back to reference M.-D. Ker, J.-S. Chen, New curvature-compensation technique for CMOS bandgap reference with sub-1-V operation. IEEE Trans. Circuits Syst. II Express Briefs 53(8), 667–671 (2006)CrossRef M.-D. Ker, J.-S. Chen, New curvature-compensation technique for CMOS bandgap reference with sub-1-V operation. IEEE Trans. Circuits Syst. II Express Briefs 53(8), 667–671 (2006)CrossRef
15.
go back to reference Y. Osaki, T. Hirose, N. Kuroki, M. Numa, 1.2-V Supply, 100-nW, 1.09-V bandgap and 0.7-V supply, 52.5-nW, 0.55-V subbandgap reference circuits for nanowatt CMOS LSIs. IEEE J. Solid State Circuits 48(6), 1530–1538 (2013)CrossRef Y. Osaki, T. Hirose, N. Kuroki, M. Numa, 1.2-V Supply, 100-nW, 1.09-V bandgap and 0.7-V supply, 52.5-nW, 0.55-V subbandgap reference circuits for nanowatt CMOS LSIs. IEEE J. Solid State Circuits 48(6), 1530–1538 (2013)CrossRef
16.
go back to reference A.J. Annema, P. Veldhorst, G. Doornbos, B. Nauta, A sub-1V bandgap voltage reference in 32 nm FinFET technology. ISSCC. 331–333 (2009) A.J. Annema, P. Veldhorst, G. Doornbos, B. Nauta, A sub-1V bandgap voltage reference in 32 nm FinFET technology. ISSCC. 331–333 (2009)
17.
go back to reference D.F. Bowers, E.J. Modica, Curvature-corrected low-noise sub-bandgap reference in 28 nm CMOS technology. Electron. Lett. 50(5), 396–398 (2014)CrossRef D.F. Bowers, E.J. Modica, Curvature-corrected low-noise sub-bandgap reference in 28 nm CMOS technology. Electron. Lett. 50(5), 396–398 (2014)CrossRef
18.
go back to reference V.V. Ivanov, K.E. Sanborn, I.M. Filanovsky, Bandgap voltage references with 1 V supply. Proceedings of the 32nd European Solid-State Circuits Conference. ESSCIRC 2006, pp. 311–314 (2006) V.V. Ivanov, K.E. Sanborn, I.M. Filanovsky, Bandgap voltage references with 1 V supply. Proceedings of the 32nd European Solid-State Circuits Conference. ESSCIRC 2006, pp. 311–314 (2006)
Metadata
Title
Challenge of High Performance Bandgap Reference Design in Nanoscale CMOS Technology
Authors
Zhang Jun-an
Li Guangjun
Zhang Rui-tao
Yang Yu-jun
Li Xi
Yan Bo
Fu Dong-bing
Luo Pu
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50824-5_2