Skip to main content
Top
Published in: Cellulose 1/2018

01-11-2017 | Original Paper

Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR)

Authors: Nathan Kruer-Zerhusen, Borja Cantero-Tubilla, David B. Wilson

Published in: Cellulose | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cellulase activity on insoluble cellulose substrates declines as the substrate is modified. The role of structural changes that result in substrate recalcitrance, such as changes to cellulose crystallinity, requires further investigation. Crystallinity of cellulose samples with varying extents of digestion can only be compared meaningfully using a high throughput - Fourier transform infrared spectroscopy (HTS-FTIR) technique when the many variables involved are carefully controlled. Hence, changes to the HTS-FTIR sample preparation methods previously described in literature were necessary in order to obtain clean raw spectra and reliable measures of cellulose crystallinity. The sample preparation methods of residual cellulose after digestion by individual cellulases and a complex cellulase mixture from T. fusca were improved to remove extraneous overlapping signals, provide accurate extent of digestion, and correct errors caused by varying concentrations. These improved preparation methods enabled measurement of crystallinity index values of residual cellulose which did not show a correlation between cellulose crystallinity and the decline in cellulase activity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Arantes V, Saddler J (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(4):1–11 Arantes V, Saddler J (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(4):1–11
go back to reference Auta R, Adamus G, Kwiecien M, Radecka I, Hooley P (2016) Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr J Biotech 16(10):470–482 Auta R, Adamus G, Kwiecien M, Radecka I, Hooley P (2016) Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr J Biotech 16(10):470–482
go back to reference Boisset C, Chanzy H, Henrissat B, Lamed R, Shoham Y, Bayer E (1999) Digestion of crystalline cellulose substrates by the clostridium thermocellum cellulosome: structural and morphological aspects. Biochem J 340(3):829–835PubMedPubMedCentralCrossRef Boisset C, Chanzy H, Henrissat B, Lamed R, Shoham Y, Bayer E (1999) Digestion of crystalline cellulose substrates by the clostridium thermocellum cellulosome: structural and morphological aspects. Biochem J 340(3):829–835PubMedPubMedCentralCrossRef
go back to reference Cannella D, Hsieh C, Felby C, Jogensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5(26):1–10 Cannella D, Hsieh C, Felby C, Jogensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5(26):1–10
go back to reference Cao Y, Tan H (2002) Effects of cellulase on the modification of cellulose. Carbohyd Res 337(14):1291–1296CrossRef Cao Y, Tan H (2002) Effects of cellulase on the modification of cellulose. Carbohyd Res 337(14):1291–1296CrossRef
go back to reference Chalmers J (2006) Mid-infrared spectroscopy: anomalies, artifacts and common errors. Handb Vib Spectrosc 2327–2347 Chalmers J (2006) Mid-infrared spectroscopy: anomalies, artifacts and common errors. Handb Vib Spectrosc 2327–2347
go back to reference Chen Y, Stipanovix A, Winter W, Wilson D, Kim Y (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293CrossRef Chen Y, Stipanovix A, Winter W, Wilson D, Kim Y (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293CrossRef
go back to reference Corgie S, Smith H, Walker L (2011) Enzymatic transformations of cellulose assessed by quantitative high-throughput Fourier transform infrared spectroscopy (QHT-FTIR). Biotechnol Bioeng 108(7):1509–1520PubMedCrossRef Corgie S, Smith H, Walker L (2011) Enzymatic transformations of cellulose assessed by quantitative high-throughput Fourier transform infrared spectroscopy (QHT-FTIR). Biotechnol Bioeng 108(7):1509–1520PubMedCrossRef
go back to reference Donaldson L, Vaidya A (2017) Visualizing recalcitrance by colocalization of cellulase, lignin, and cellulose in pretreated pine biomass using fluorescence microscopy. Sci Rep 7:44386PubMedPubMedCentralCrossRef Donaldson L, Vaidya A (2017) Visualizing recalcitrance by colocalization of cellulase, lignin, and cellulose in pretreated pine biomass using fluorescence microscopy. Sci Rep 7:44386PubMedPubMedCentralCrossRef
go back to reference Forsberg Z, Mackenzie A, Sorlie M, Rohr A, Helland R, Arvai A, Fijsink V (2014) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci USA 111(23):8446–8451PubMedCrossRef Forsberg Z, Mackenzie A, Sorlie M, Rohr A, Helland R, Arvai A, Fijsink V (2014) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci USA 111(23):8446–8451PubMedCrossRef
go back to reference Hu J, Gourlay K, Arantes V, Van Dyk J, Pribowo A, Saddler J (2015) The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates. Chemsuschem 8(5):901–907PubMedCrossRef Hu J, Gourlay K, Arantes V, Van Dyk J, Pribowo A, Saddler J (2015) The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates. Chemsuschem 8(5):901–907PubMedCrossRef
go back to reference Hurtubise F, Krassig H (1960) Classification of fine structural characteristics in cellulose by infrared spectroscopy. Anal Chem 32(2):177–181CrossRef Hurtubise F, Krassig H (1960) Classification of fine structural characteristics in cellulose by infrared spectroscopy. Anal Chem 32(2):177–181CrossRef
go back to reference Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186–36190PubMedPubMedCentralCrossRef Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186–36190PubMedPubMedCentralCrossRef
go back to reference Irwin D, Zhang S, Wilson D (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267(16):4988–4997PubMedCrossRef Irwin D, Zhang S, Wilson D (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267(16):4988–4997PubMedCrossRef
go back to reference Irwin D, Leathers T, Greene R, Wilson D (2003) Corn fiber hydrolysis by Thermobifida fusca extracellular enzymes. Appl Microbiol Biotechnol 61(4):352–358PubMedCrossRef Irwin D, Leathers T, Greene R, Wilson D (2003) Corn fiber hydrolysis by Thermobifida fusca extracellular enzymes. Appl Microbiol Biotechnol 61(4):352–358PubMedCrossRef
go back to reference Jeoh T, Santa-Maria MC, O’Dell PJ (2013) Assessing cellulose microfibrillar structure changes due to cellulase action. Carbohyd Polym 97(2):581–586CrossRef Jeoh T, Santa-Maria MC, O’Dell PJ (2013) Assessing cellulose microfibrillar structure changes due to cellulase action. Carbohyd Polym 97(2):581–586CrossRef
go back to reference King B, Donnelly M, Bergstrom G, Walker L, Gibson D (2009) An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng 102(4):1033–1044PubMedCrossRef King B, Donnelly M, Bergstrom G, Walker L, Gibson D (2009) An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng 102(4):1033–1044PubMedCrossRef
go back to reference Kostylev M, Wilson D (2013) Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion. Biochemistry 52(33):5656–5664PubMedPubMedCentralCrossRef Kostylev M, Wilson D (2013) Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion. Biochemistry 52(33):5656–5664PubMedPubMedCentralCrossRef
go back to reference Kostylev M, Wilson D (2014) A distinct model of synergism between a processive endocellulase (TfCel9A) and an exocellulase (TfCel48A) from Thermobifida fusca. Appl Environ Microbiol 80(1):339–344PubMedPubMedCentralCrossRef Kostylev M, Wilson D (2014) A distinct model of synergism between a processive endocellulase (TfCel9A) and an exocellulase (TfCel48A) from Thermobifida fusca. Appl Environ Microbiol 80(1):339–344PubMedPubMedCentralCrossRef
go back to reference Kostylev M, Alahuhta M, Chen M, Brunecky R, Himmel M, Lunin V, Wilson D (2014) Cel48A from Thermobifida fusca: structure and site directed mutagenesis of key residues. Biotechnol Bioeng 111(4):664–673PubMedCrossRef Kostylev M, Alahuhta M, Chen M, Brunecky R, Himmel M, Lunin V, Wilson D (2014) Cel48A from Thermobifida fusca: structure and site directed mutagenesis of key residues. Biotechnol Bioeng 111(4):664–673PubMedCrossRef
go back to reference Lever M (1977) Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Anal Biochem 81(1):21–27PubMedCrossRef Lever M (1977) Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Anal Biochem 81(1):21–27PubMedCrossRef
go back to reference Li Y, Irwin D, Wilson D (2010) Increased crystalline cellulose activity via combinations of amino acid changes in the family 9 catalytic domain and family 3c cellulose binding module of Thermobifida fusca Cel9a. Appl Environ Microbiol 76:2582–2588PubMedPubMedCentralCrossRef Li Y, Irwin D, Wilson D (2010) Increased crystalline cellulose activity via combinations of amino acid changes in the family 9 catalytic domain and family 3c cellulose binding module of Thermobifida fusca Cel9a. Appl Environ Microbiol 76:2582–2588PubMedPubMedCentralCrossRef
go back to reference Lionetto F, Del Sole R, Cannoletta D, Vasapollo G, Manffezzoli A (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5(10):1910–1922PubMedCentralCrossRef Lionetto F, Del Sole R, Cannoletta D, Vasapollo G, Manffezzoli A (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5(10):1910–1922PubMedCentralCrossRef
go back to reference Mansfield S, Meder R (2003) Cellulose hydrolysis–the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10(2):159–169CrossRef Mansfield S, Meder R (2003) Cellulose hydrolysis–the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10(2):159–169CrossRef
go back to reference Mitchell A (1990) Second-derivative FT-IR spectra of native celluloses. Carbohyd Res 197:53–60CrossRef Mitchell A (1990) Second-derivative FT-IR spectra of native celluloses. Carbohyd Res 197:53–60CrossRef
go back to reference Nada A, Kamel S, El-Sahkhawy M (2000) Thermal behavior and infrared spectroscopy of cellulose carbamates. Polym Degrad Stab 70(3):347–355CrossRef Nada A, Kamel S, El-Sahkhawy M (2000) Thermal behavior and infrared spectroscopy of cellulose carbamates. Polym Degrad Stab 70(3):347–355CrossRef
go back to reference Nelson M, O’Connor R (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattices types I, II, III, and of amorphous cellulose. J Appl Polym Sci 8(3):1311–1324CrossRef Nelson M, O’Connor R (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattices types I, II, III, and of amorphous cellulose. J Appl Polym Sci 8(3):1311–1324CrossRef
go back to reference Olsen S, Borch K, Cruys-Bagger N, Westh P (2014) The role of product inhibition as a yield- determining factor in enzymatic high-solid hydrolysis of pretreated corn stover. Appl Biochem Biotechnol 174(1):146–155PubMedCrossRef Olsen S, Borch K, Cruys-Bagger N, Westh P (2014) The role of product inhibition as a yield- determining factor in enzymatic high-solid hydrolysis of pretreated corn stover. Appl Biochem Biotechnol 174(1):146–155PubMedCrossRef
go back to reference Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(10):1–10 Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(10):1–10
go back to reference Peciulyte A, Kiskis J, Larson P, Olssson L, Enejder A (2016) Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy. Cellulose 23:1521–1536CrossRef Peciulyte A, Kiskis J, Larson P, Olssson L, Enejder A (2016) Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy. Cellulose 23:1521–1536CrossRef
go back to reference Väljamäe P, Slid V, Pettersson G, Johansson G (1998) The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur J Biochem 253(2):469–475PubMedCrossRef Väljamäe P, Slid V, Pettersson G, Johansson G (1998) The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur J Biochem 253(2):469–475PubMedCrossRef
go back to reference Väljamäe P, Kipper K, Pettersson G, Johansson G (2003) Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics. Biotechnol Bioeng 84(2):254–257PubMedCrossRef Väljamäe P, Kipper K, Pettersson G, Johansson G (2003) Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics. Biotechnol Bioeng 84(2):254–257PubMedCrossRef
go back to reference Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl Catal A 317(1):70–81CrossRef Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl Catal A 317(1):70–81CrossRef
go back to reference Zhang S, Wolfgang D, Wilson D (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol Bioeng 66(1):35–41PubMedCrossRef Zhang S, Wolfgang D, Wilson D (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol Bioeng 66(1):35–41PubMedCrossRef
go back to reference Zhang S, Irwin D, Wilson D (2000) Site-directed mutation of non-catalytic residues of Thermobifida fusca exocellulase Cel6B. Eur J Biochem 267(11):3101–3115PubMedCrossRef Zhang S, Irwin D, Wilson D (2000) Site-directed mutation of non-catalytic residues of Thermobifida fusca exocellulase Cel6B. Eur J Biochem 267(11):3101–3115PubMedCrossRef
Metadata
Title
Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR)
Authors
Nathan Kruer-Zerhusen
Borja Cantero-Tubilla
David B. Wilson
Publication date
01-11-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 1/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1542-0

Other articles of this Issue 1/2018

Cellulose 1/2018 Go to the issue