Skip to main content
Top

2018 | OriginalPaper | Chapter

26. Characterization of Electronic, Electrical, Optical, and Mechanical Properties of Graphene

Authors : Wai-Leong Chen, Dong-Ming Wu, Yinren Chen, Yonhua Tzeng

Published in: Nanopackaging

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene is a two-dimensional material which is composed of a honeycomb lattice made of single atomic layer of carbon atoms arranged in a hexagonal atomic structure. It has many extraordinary properties desirable for real-world applications. Low electrical resistivity, high electromigration resistance, high thermal conductivity, and outstanding mechanical strength make graphene a promising candidate for nano-interconnects. The atomically thin graphene is also optically transparent in a wide spectrum of wavelength and an excellent diffusion barrier. In this chapter, characterization of graphene for electronic, electrical, optical, and mechanical applications is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
3.
go back to reference Daniel RC et al (2012) Experimental review of graphene ISRN condensed matter physics. 2012:501686, 56 pages Daniel RC et al (2012) Experimental review of graphene ISRN condensed matter physics. 2012:501686, 56 pages
4.
go back to reference Yang S et al (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater 22(17):3634–3640CrossRef Yang S et al (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater 22(17):3634–3640CrossRef
5.
go back to reference Poh HL et al (2013) Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 7:5262–5272CrossRef Poh HL et al (2013) Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 7:5262–5272CrossRef
6.
go back to reference Choi CH et al (2013) Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene–CNT self-assembly for enhanced oxygen reduction activity in acid media. RSC Adv 3:12417–12422CrossRef Choi CH et al (2013) Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene–CNT self-assembly for enhanced oxygen reduction activity in acid media. RSC Adv 3:12417–12422CrossRef
7.
go back to reference Liu Z-W et al (2011) Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Chem Int Ed 50:3257–3261CrossRef Liu Z-W et al (2011) Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Chem Int Ed 50:3257–3261CrossRef
8.
go back to reference Yazyev OV et al (2008) Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys Rev Lett 100:047209CrossRef Yazyev OV et al (2008) Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys Rev Lett 100:047209CrossRef
9.
go back to reference Wu Z-S et al (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417CrossRef Wu Z-S et al (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417CrossRef
10.
go back to reference Liu C-Y et al (2011) Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy. Opt Express 19(18):17092–17098CrossRef Liu C-Y et al (2011) Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy. Opt Express 19(18):17092–17098CrossRef
11.
go back to reference Elias DC et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610CrossRef Elias DC et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610CrossRef
12.
go back to reference Gupta A et al (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6(12):2667–2673CrossRef Gupta A et al (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6(12):2667–2673CrossRef
13.
go back to reference Kompan ME et al (2010) Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by raman spectroscopy. Tech Phys Lett 36:1140–1142CrossRef Kompan ME et al (2010) Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by raman spectroscopy. Tech Phys Lett 36:1140–1142CrossRef
14.
go back to reference Sofo JO et al (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75:153401CrossRef Sofo JO et al (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75:153401CrossRef
15.
go back to reference Chen W, et al (2011) Low-stress transfer of graphene and its tunable resistance by remote plasma treatments in hydrogen. IEEE Nanotechnology Conference, pp 15–18 Chen W, et al (2011) Low-stress transfer of graphene and its tunable resistance by remote plasma treatments in hydrogen. IEEE Nanotechnology Conference, pp 15–18
16.
go back to reference Shin D-W et al (2016) Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments. Mater Res Bull 82:1–142CrossRef Shin D-W et al (2016) Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments. Mater Res Bull 82:1–142CrossRef
17.
go back to reference Zhang C, Mahmood N et al (2013) Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 25:4932–4937CrossRef Zhang C, Mahmood N et al (2013) Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 25:4932–4937CrossRef
18.
go back to reference Zhu C, Dong S (2013) Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5:1753–1767CrossRef Zhu C, Dong S (2013) Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5:1753–1767CrossRef
19.
go back to reference Gopalakrishnan K et al (2013) Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis. J Mater Chem A 1:7563–7565CrossRef Gopalakrishnan K et al (2013) Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis. J Mater Chem A 1:7563–7565CrossRef
20.
go back to reference Ding W et al (2013) Space-confinement- induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Chem Int Ed 52:11755–11759CrossRef Ding W et al (2013) Space-confinement- induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Chem Int Ed 52:11755–11759CrossRef
21.
go back to reference Wu Z-S et al (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471CrossRef Wu Z-S et al (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471CrossRef
22.
go back to reference Maitra U et al (2013) Highly effective visible-light- induced H2 generation by single-layer 1T- MoS2 and a nanocomposite of few-layer 2H- MoS2 with heavily nitrogenated graphene. Chem Int Ed 52(49):13057–13061CrossRef Maitra U et al (2013) Highly effective visible-light- induced H2 generation by single-layer 1T- MoS2 and a nanocomposite of few-layer 2H- MoS2 with heavily nitrogenated graphene. Chem Int Ed 52(49):13057–13061CrossRef
23.
go back to reference Kim YA et al (2012) Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6:6293–6300CrossRef Kim YA et al (2012) Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6:6293–6300CrossRef
24.
go back to reference Panchakarla LS et al (2009) Synthesis, structure and properties of boron and nitrogen doped graphene. Adv Mater 21:4726–4730 Panchakarla LS et al (2009) Synthesis, structure and properties of boron and nitrogen doped graphene. Adv Mater 21:4726–4730
25.
go back to reference Wang L et al (2013) Boron-doped graphene: scalable and tunable p-type carrier concentration doping. J Phys Chem C 117:23251–23257CrossRef Wang L et al (2013) Boron-doped graphene: scalable and tunable p-type carrier concentration doping. J Phys Chem C 117:23251–23257CrossRef
26.
go back to reference Shan C et al (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382CrossRef Shan C et al (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382CrossRef
27.
go back to reference Jeong HM et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477CrossRef Jeong HM et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477CrossRef
28.
go back to reference Wang K et al (2014) Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability. Energy 70:612–617CrossRef Wang K et al (2014) Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability. Energy 70:612–617CrossRef
29.
go back to reference Chen P et al (2016) One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci Rep 6:26146CrossRef Chen P et al (2016) One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci Rep 6:26146CrossRef
30.
go back to reference Lin T et al (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 18 350(6267):1508–1513 Lin T et al (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 18 350(6267):1508–1513
31.
go back to reference Yang L et al (2016) Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture. Nanoscale 8:2159–2167CrossRef Yang L et al (2016) Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture. Nanoscale 8:2159–2167CrossRef
32.
go back to reference Xue Y et al (2015) Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage. 2D Mater 2(4):044001CrossRef Xue Y et al (2015) Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage. 2D Mater 2(4):044001CrossRef
33.
go back to reference Li X et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944CrossRef Li X et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944CrossRef
34.
go back to reference Wei D et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758CrossRef Wei D et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758CrossRef
35.
go back to reference Jeong HM et al (2011) Nitrogen-doped graphene for high-performance ultra-capacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477CrossRef Jeong HM et al (2011) Nitrogen-doped graphene for high-performance ultra-capacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477CrossRef
36.
go back to reference Mou Z et al (2011) Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl Surf Sci 258:1704–1710CrossRef Mou Z et al (2011) Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl Surf Sci 258:1704–1710CrossRef
37.
go back to reference Xu D et al (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495CrossRef Xu D et al (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495CrossRef
38.
go back to reference Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355CrossRef Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355CrossRef
39.
40.
go back to reference Guo B et al (2010) Controllable N-doping of graphene. Nano Lett 10(12):4975–4980CrossRef Guo B et al (2010) Controllable N-doping of graphene. Nano Lett 10(12):4975–4980CrossRef
41.
go back to reference Wang H et al (2013) Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 9:1316–1320CrossRef Wang H et al (2013) Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 9:1316–1320CrossRef
42.
go back to reference Wu T et al (2012) Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New J Chem 36(6):1385–1391CrossRef Wu T et al (2012) Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New J Chem 36(6):1385–1391CrossRef
43.
go back to reference Li X et al (2012) Boron doping of graphene for graphene–silicon p–n junction solar cells. Adv Energy Mater 2:425–429CrossRef Li X et al (2012) Boron doping of graphene for graphene–silicon p–n junction solar cells. Adv Energy Mater 2:425–429CrossRef
44.
go back to reference Gebhardt J et al (2013) Growth and electronic structure of boron-doped graphene. Phys Rev B Cond Matter Mater Phys 87:155437CrossRef Gebhardt J et al (2013) Growth and electronic structure of boron-doped graphene. Phys Rev B Cond Matter Mater Phys 87:155437CrossRef
45.
go back to reference Cattelan M et al (2013) Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures. Chem Mater 25:1490–1495CrossRef Cattelan M et al (2013) Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures. Chem Mater 25:1490–1495CrossRef
46.
go back to reference Sheng Z-H et al (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22:390–395CrossRef Sheng Z-H et al (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22:390–395CrossRef
47.
go back to reference Pham VH et al (2013) Highly efficient reduction of graphene oxide using ammonia borane. Chem Commun 49:6665–6667CrossRef Pham VH et al (2013) Highly efficient reduction of graphene oxide using ammonia borane. Chem Commun 49:6665–6667CrossRef
48.
go back to reference Khai TV et al (2012) Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films. Chem Eng J 211–212:369–377CrossRef Khai TV et al (2012) Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films. Chem Eng J 211–212:369–377CrossRef
49.
go back to reference Ruitao LV et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586CrossRef Ruitao LV et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586CrossRef
50.
go back to reference Qu L, Liu Y et al (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326CrossRef Qu L, Liu Y et al (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326CrossRef
51.
go back to reference Tomo-o T et al (2012) Synthesis of nitrogen-doped graphene by plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 51:055101CrossRef Tomo-o T et al (2012) Synthesis of nitrogen-doped graphene by plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 51:055101CrossRef
52.
go back to reference Zhang L-S et al (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys 12:12055–12059CrossRef Zhang L-S et al (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys 12:12055–12059CrossRef
53.
go back to reference Jeon IY et al (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA 109:5588–5593CrossRef Jeon IY et al (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA 109:5588–5593CrossRef
54.
go back to reference Jeon IY et al (2013) Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci Rep 3:2260–2265CrossRef Jeon IY et al (2013) Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci Rep 3:2260–2265CrossRef
55.
go back to reference Tetlow H et al (2014) Growth of epitaxial graphene: theory and experiment. Phys Rep 542(3):195–295CrossRef Tetlow H et al (2014) Growth of epitaxial graphene: theory and experiment. Phys Rep 542(3):195–295CrossRef
56.
go back to reference Oznuluer T et al (2011) Synthesis of graphene on gold. Appl Phys Lett 98:183101CrossRef Oznuluer T et al (2011) Synthesis of graphene on gold. Appl Phys Lett 98:183101CrossRef
57.
go back to reference Park G et al (2011) Synthesis of graphene-gold nanocomposites via sonochemical reduction. J Nanosci Nanotechnol 11(7):6095–6101CrossRef Park G et al (2011) Synthesis of graphene-gold nanocomposites via sonochemical reduction. J Nanosci Nanotechnol 11(7):6095–6101CrossRef
58.
go back to reference Liu L et al (2012) High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6(9):8241–8824CrossRef Liu L et al (2012) High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6(9):8241–8824CrossRef
59.
60.
go back to reference Xia F et al (2011) The origins and limits of metal-graphene junction resistance. Nat Nanotechnol 6(3):179–184CrossRef Xia F et al (2011) The origins and limits of metal-graphene junction resistance. Nat Nanotechnol 6(3):179–184CrossRef
61.
go back to reference Tzeng Y et al (2012) Proceedings of 12th IEEE nanotechnology conference, pp 1–4 Tzeng Y et al (2012) Proceedings of 12th IEEE nanotechnology conference, pp 1–4
62.
go back to reference Wu B et al (2013) Self-organized graphene crystal patterns. NPG Asia Mater 5:e36CrossRef Wu B et al (2013) Self-organized graphene crystal patterns. NPG Asia Mater 5:e36CrossRef
63.
go back to reference Geng D et al (2013) Fractal etching of graphene. J Am Chem Soc 135:6431–6434CrossRef Geng D et al (2013) Fractal etching of graphene. J Am Chem Soc 135:6431–6434CrossRef
64.
go back to reference Luo B et al (2014) Layer-stacking growth and electrical transport of hierarchical graphene architectures. Adv Mater 26:3218–3224CrossRef Luo B et al (2014) Layer-stacking growth and electrical transport of hierarchical graphene architectures. Adv Mater 26:3218–3224CrossRef
65.
go back to reference Liu Y et al (2015) Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetector. Nat Commun 6:8589CrossRef Liu Y et al (2015) Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetector. Nat Commun 6:8589CrossRef
66.
go back to reference Kang P et al (2016) Photodetectors: crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv Mater 28:4639–4645CrossRef Kang P et al (2016) Photodetectors: crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv Mater 28:4639–4645CrossRef
67.
go back to reference Dang VQ et al (2015) Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector. Small 11(25):3054–3065CrossRef Dang VQ et al (2015) Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector. Small 11(25):3054–3065CrossRef
68.
go back to reference Lee Y et al (2015) High-performance perovskite–graphene hybrid photodetector. Adv Mater 27:41–46CrossRef Lee Y et al (2015) High-performance perovskite–graphene hybrid photodetector. Adv Mater 27:41–46CrossRef
69.
go back to reference Sun Z et al (2016) Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale 8:7377CrossRef Sun Z et al (2016) Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale 8:7377CrossRef
70.
go back to reference Miao J et al (2015) High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 11(8):936–942CrossRef Miao J et al (2015) High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 11(8):936–942CrossRef
71.
go back to reference Liu R et al (2015) Gate modulation of graphene-ZnO nanowire Schottky diode. Sci Rep 5:10125CrossRef Liu R et al (2015) Gate modulation of graphene-ZnO nanowire Schottky diode. Sci Rep 5:10125CrossRef
72.
go back to reference Haider G et al (2016) Electrical-polarization- induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots. Adv Funct Mater 26:620–628CrossRef Haider G et al (2016) Electrical-polarization- induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots. Adv Funct Mater 26:620–628CrossRef
73.
go back to reference Chiang C-W et al (2016) Highly stretchable and sensitive photodetectors based on hybrid graphene and graphene quantum dots. ACS Appl Mater Interfaces 8:466–471CrossRef Chiang C-W et al (2016) Highly stretchable and sensitive photodetectors based on hybrid graphene and graphene quantum dots. ACS Appl Mater Interfaces 8:466–471CrossRef
74.
75.
go back to reference Chen D et al (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180CrossRef Chen D et al (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180CrossRef
76.
go back to reference Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef
77.
go back to reference Chun S et al (2014) A flexible graphene touch sensor in the general human touch range. Appl Phys Lett 105:041907CrossRef Chun S et al (2014) A flexible graphene touch sensor in the general human touch range. Appl Phys Lett 105:041907CrossRef
78.
go back to reference Cote LJ et al (2009) Langmuir−Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043CrossRef Cote LJ et al (2009) Langmuir−Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043CrossRef
79.
go back to reference Qiao Z et al (2015) Modulation of the optical transmittance in monolayer graphene oxide by using external electric field. Sci Rep 5:14441CrossRef Qiao Z et al (2015) Modulation of the optical transmittance in monolayer graphene oxide by using external electric field. Sci Rep 5:14441CrossRef
80.
go back to reference Wu J et al (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302CrossRef Wu J et al (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302CrossRef
81.
go back to reference Wang SY et al (1983) 100 GHz bandwidth planar GaAs Schottky photodiode. Electron Lett 19(14):554–555CrossRef Wang SY et al (1983) 100 GHz bandwidth planar GaAs Schottky photodiode. Electron Lett 19(14):554–555CrossRef
82.
go back to reference Wey YG et al (1991) Ultrafast graded double-heterostructure GaInAs/InP photodiode. Appl Phys Lett 58(19):2156CrossRef Wey YG et al (1991) Ultrafast graded double-heterostructure GaInAs/InP photodiode. Appl Phys Lett 58(19):2156CrossRef
83.
go back to reference Hack M et al (1989) Amorphous silicon photoconductive diode. Appl Phys Lett 54:96CrossRef Hack M et al (1989) Amorphous silicon photoconductive diode. Appl Phys Lett 54:96CrossRef
84.
go back to reference Smith GM et al (1999) Substrate effects on GaN photoconductive detector performance. Appl Phys Lett 75:25CrossRef Smith GM et al (1999) Substrate effects on GaN photoconductive detector performance. Appl Phys Lett 75:25CrossRef
85.
go back to reference Kopytko M et al (2010) High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes. Optoelectron Rev 18(3):277–283 Kopytko M et al (2010) High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes. Optoelectron Rev 18(3):277–283
86.
go back to reference Nair RR et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRef Nair RR et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRef
87.
go back to reference Mak KF et al (2012) Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun 152:1341–1349CrossRef Mak KF et al (2012) Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun 152:1341–1349CrossRef
88.
go back to reference Mueller T, Xia FNA, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photon 4:297–301CrossRef Mueller T, Xia FNA, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photon 4:297–301CrossRef
89.
go back to reference Mittendorff M et al (2015) Universal ultrafast detector for short optical pulses based on graphene. Opt Express 23(22):28728–28735CrossRef Mittendorff M et al (2015) Universal ultrafast detector for short optical pulses based on graphene. Opt Express 23(22):28728–28735CrossRef
90.
go back to reference Cheng C-C et al (2016) Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions. Appl Phys Lett 109:053501CrossRef Cheng C-C et al (2016) Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions. Appl Phys Lett 109:053501CrossRef
91.
92.
go back to reference Castro Nero AH et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRef Castro Nero AH et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRef
93.
go back to reference Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385CrossRef Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385CrossRef
94.
go back to reference Park HJ et al (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094CrossRef Park HJ et al (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094CrossRef
95.
go back to reference Janowska I et al (2012) Mechanical thinning to make few-layer graphene from pencil lead. Carbon 50(8):3106–3110CrossRef Janowska I et al (2012) Mechanical thinning to make few-layer graphene from pencil lead. Carbon 50(8):3106–3110CrossRef
96.
go back to reference Griep MH et al (2016) Enhanced graphene mechanical properties through ultrasmooth copper growth substrates. Nano Lett 16(3):1657–1662CrossRef Griep MH et al (2016) Enhanced graphene mechanical properties through ultrasmooth copper growth substrates. Nano Lett 16(3):1657–1662CrossRef
98.
go back to reference Fujita M et al (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65(7):1920CrossRef Fujita M et al (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65(7):1920CrossRef
99.
go back to reference Nakada K et al (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54(24):17954CrossRef Nakada K et al (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54(24):17954CrossRef
100.
go back to reference Sharma V et al (2014) MLGNR interconnects with FinFet driver: optimized delay and power performance for technology beyond 16nm. Int J Res Eng Technol (IJRET) 3(9):117–123CrossRef Sharma V et al (2014) MLGNR interconnects with FinFet driver: optimized delay and power performance for technology beyond 16nm. Int J Res Eng Technol (IJRET) 3(9):117–123CrossRef
101.
go back to reference Gorjizadeh N et al (2010) Chemical functionalization of graphene nanoribbons. J Nanomater 2010:513501. 7 pagesCrossRef Gorjizadeh N et al (2010) Chemical functionalization of graphene nanoribbons. J Nanomater 2010:513501. 7 pagesCrossRef
102.
go back to reference Gorjizadeh N et al (2010) Chemical functionalization of graphene nanoribbons. J Nanomater 2010:513501CrossRef Gorjizadeh N et al (2010) Chemical functionalization of graphene nanoribbons. J Nanomater 2010:513501CrossRef
103.
go back to reference Wu Y et al (2011) Conductance of graphene nanoribbon junctions and the tight binding model. Nano Scale Res Lett 6 Wu Y et al (2011) Conductance of graphene nanoribbon junctions and the tight binding model. Nano Scale Res Lett 6
104.
go back to reference Reddy N, Majumder K et al (2012) Optimized delay and power performances in multilayer graphene nanoribbon interconnects. Asia Pacific conference on postgraduate research in microelectronics and electronics, PRIME ASIA. pp 122–125, 5–7 Reddy N, Majumder K et al (2012) Optimized delay and power performances in multilayer graphene nanoribbon interconnects. Asia Pacific conference on postgraduate research in microelectronics and electronics, PRIME ASIA. pp 122–125, 5–7
105.
go back to reference Reddy N et al (2012) Dynamic crosstalk effect in multilayer graphene nanoribbon interconnects. 2012 international conference on communication, devices and intelligent systems (CODIS). pp 472–475, 28–29 Reddy N et al (2012) Dynamic crosstalk effect in multilayer graphene nanoribbon interconnects. 2012 international conference on communication, devices and intelligent systems (CODIS). pp 472–475, 28–29
106.
107.
go back to reference Zhao WS et al. (2012) Signal integrity analysis of graphene nano-ribbon (GNR) interconnects. 2012 I.E. electrical design of advanced packaging and systems symposium, EDAPS. pp 227–230, 9–11 Zhao WS et al. (2012) Signal integrity analysis of graphene nano-ribbon (GNR) interconnects. 2012 I.E. electrical design of advanced packaging and systems symposium, EDAPS. pp 227–230, 9–11
108.
go back to reference Duryat RS et al (2016) Graphene nanoribbons (GNRs) for future interconnect. IOP Conf Ser Mater Sci Eng 131:012018CrossRef Duryat RS et al (2016) Graphene nanoribbons (GNRs) for future interconnect. IOP Conf Ser Mater Sci Eng 131:012018CrossRef
109.
go back to reference Otakar F et al (2014) Development of a universal stress sensor for graphene and carbon fibres. Carbon 68:440–451CrossRef Otakar F et al (2014) Development of a universal stress sensor for graphene and carbon fibres. Carbon 68:440–451CrossRef
110.
go back to reference Nevius MS et al (2015) Semiconducting graphene from highly ordered substrate interactions. PRL 115:136802CrossRef Nevius MS et al (2015) Semiconducting graphene from highly ordered substrate interactions. PRL 115:136802CrossRef
111.
go back to reference Markevich et al (2012) Modification of electronic properties of graphene by interaction with substrates and dopants. University of Exeter, Doctoral Theses Markevich et al (2012) Modification of electronic properties of graphene by interaction with substrates and dopants. University of Exeter, Doctoral Theses
112.
go back to reference Ishigami et al (2007) Atomic structure of graphene on SiO2. Nano Lett 7:1643–1648CrossRef Ishigami et al (2007) Atomic structure of graphene on SiO2. Nano Lett 7:1643–1648CrossRef
113.
go back to reference Katsnelson et al (2007) Detection of individual gas molecule adsorbed on graphene. Phil Trans Roy Soc A 366:195–204CrossRef Katsnelson et al (2007) Detection of individual gas molecule adsorbed on graphene. Phil Trans Roy Soc A 366:195–204CrossRef
114.
go back to reference Fratini S et al (2008) Substrate-limited electron dynamics in graphene. Phys Rev B 77:195415CrossRef Fratini S et al (2008) Substrate-limited electron dynamics in graphene. Phys Rev B 77:195415CrossRef
115.
go back to reference Meric I et al (2008) Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nat Nanotechnol 3:654–659CrossRef Meric I et al (2008) Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nat Nanotechnol 3:654–659CrossRef
116.
go back to reference Ando T (2006) Fine structure constant defines visual transparency of graphene. J Phys Soc Jpn 75:074716CrossRef Ando T (2006) Fine structure constant defines visual transparency of graphene. J Phys Soc Jpn 75:074716CrossRef
117.
go back to reference Nomura K et al (2007) Quantum transport of massless Dirac fermions. Phys Rev Lett 98:076602CrossRef Nomura K et al (2007) Quantum transport of massless Dirac fermions. Phys Rev Lett 98:076602CrossRef
118.
go back to reference Dean CR et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726CrossRef Dean CR et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726CrossRef
119.
go back to reference Das Sarma S et al (2011) Electronic transport in two-dimensional graphene. Phys Rev B 83:121405 (R)CrossRef Das Sarma S et al (2011) Electronic transport in two-dimensional graphene. Phys Rev B 83:121405 (R)CrossRef
120.
go back to reference Young AF et al (2012) Electronic compressibility of layer-polarized bilayer graphene. Phys Rev B 85:235458CrossRef Young AF et al (2012) Electronic compressibility of layer-polarized bilayer graphene. Phys Rev B 85:235458CrossRef
121.
go back to reference Shahriari et al (2016) Interaction of nano-boron nitride/graphene sheets with anode lithium ion battery. J Comput Theor Nanosci 13(5):3070–3082CrossRef Shahriari et al (2016) Interaction of nano-boron nitride/graphene sheets with anode lithium ion battery. J Comput Theor Nanosci 13(5):3070–3082CrossRef
Metadata
Title
Characterization of Electronic, Electrical, Optical, and Mechanical Properties of Graphene
Authors
Wai-Leong Chen
Dong-Ming Wu
Yinren Chen
Yonhua Tzeng
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-90362-0_26

Premium Partners