Skip to main content
Top
Published in: Journal of Materials Science 5/2019

13-11-2018 | Metals

Characterization of hot deformation behavior and constitutive modeling of Al–Mg–Si–Mn–Cr alloy

Authors: Shuhui Liu, Qinglin Pan, Hang Li, Zhiqi Huang, Kuo Li, Xin He, Xinyu Li

Published in: Journal of Materials Science | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To characterize the hot deformation behavior of commonly used aluminum alloy, a homogeneous Al–Mg–Si–Mn–Cr alloy was analyzed by thermal simulation test at deformation temperature range of 653–803 K and strain rate range of 0.01–10 s−1. The flow stresses were predicted by modified Johnson–Cook model, modified Zerilli–Armstrong model and strain-compensated Arrhenius model. The results show that the three models are able to predict the flow behavior of the alloy. Strain-compensated Arrhenius model has the best simulation ability in predicting flow stresses, while the modified Johnson–Cook model has lower prediction accuracy and the modified Zerilli–Armstrong model has poorer predictive ability at low strain rates. Microstructure evolution shows that subgrain boundaries form at original grain boundaries at first, moving toward to the center of the deformed grains. The dislocation density decreases, while the number and the size of subgrains increase with the decreasing Zener–Hollomon (Z) parameter. Both dynamic recovery (DRV) and dynamic recrystallization take place in hot deformation process. DRV is considered to be the primary dynamic softening mechanism throughout the entire hot deformation range. Continuous dynamic recrystallization and discontinuous dynamic recrystallization operate concurrently at low strain rates and high temperatures. The relationship of subgrain size and predicted flow stress is presented. Moreover, activation volume is introduced to reveal the thermal activation mechanism during hot deformation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Miller WS, Zhuang L, Bottema J et al (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng, A 280:37–49CrossRef Miller WS, Zhuang L, Bottema J et al (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng, A 280:37–49CrossRef
2.
go back to reference Abid T, Boubertakh A, Hamamda S (2010) Effect of pre-aging and maturing on the precipitation hardening of an Al–Mg–Si alloy. J Alloys Compd 490:166–169CrossRef Abid T, Boubertakh A, Hamamda S (2010) Effect of pre-aging and maturing on the precipitation hardening of an Al–Mg–Si alloy. J Alloys Compd 490:166–169CrossRef
3.
go back to reference Kumar V, Kumar D (2017) Investigation of tensile behaviour of cryorolled and room temperature rolled 6082 Al alloy. Mater Sci Eng, A 691:211–217CrossRef Kumar V, Kumar D (2017) Investigation of tensile behaviour of cryorolled and room temperature rolled 6082 Al alloy. Mater Sci Eng, A 691:211–217CrossRef
4.
go back to reference Remøe MS, Marthinsen K, Westermann I et al (2017) The effect of alloying elements on the ductility of Al–Mg–Si alloys. Mater Sci Eng, A 693:60–72CrossRef Remøe MS, Marthinsen K, Westermann I et al (2017) The effect of alloying elements on the ductility of Al–Mg–Si alloys. Mater Sci Eng, A 693:60–72CrossRef
5.
go back to reference Lodgaard L, Ryum N (2000) Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater Sci Eng, A 283:144–152CrossRef Lodgaard L, Ryum N (2000) Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater Sci Eng, A 283:144–152CrossRef
6.
go back to reference Lin YC, Chen X-M (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32:1733–1759CrossRef Lin YC, Chen X-M (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32:1733–1759CrossRef
7.
go back to reference Zhu Z, Lu Y, Xie Q et al (2017) Mechanical properties and dynamic constitutive model of 42CrMo steel. Mater Des 119:171–179CrossRef Zhu Z, Lu Y, Xie Q et al (2017) Mechanical properties and dynamic constitutive model of 42CrMo steel. Mater Des 119:171–179CrossRef
8.
go back to reference Le C, Changyu Z, Jian P et al (2017) Fields–Backofen and a modified Johnson–Cook model for CP-Ti at ambient and intermediate temperature. Rare Metal Mat Eng 46:1803–1809CrossRef Le C, Changyu Z, Jian P et al (2017) Fields–Backofen and a modified Johnson–Cook model for CP-Ti at ambient and intermediate temperature. Rare Metal Mat Eng 46:1803–1809CrossRef
9.
go back to reference Wang J, Zhao G, Chen L et al (2016) A comparative study of several constitutive models for powder metallurgy tungsten at elevated temperature. Mater Des 90:91–100CrossRef Wang J, Zhao G, Chen L et al (2016) A comparative study of several constitutive models for powder metallurgy tungsten at elevated temperature. Mater Des 90:91–100CrossRef
10.
go back to reference Zhao Y, Sun J, Li J et al (2017) A comparative study on Johnson–Cook and modified Johnson–Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloy. J Alloys Compd 723:179–187CrossRef Zhao Y, Sun J, Li J et al (2017) A comparative study on Johnson–Cook and modified Johnson–Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloy. J Alloys Compd 723:179–187CrossRef
11.
go back to reference Lin YC, Chen X-M, Liu G (2010) A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Mater Sci Eng, A 527:6980–6986CrossRef Lin YC, Chen X-M, Liu G (2010) A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Mater Sci Eng, A 527:6980–6986CrossRef
13.
go back to reference Wang K, Li X, Li Q et al (2017) Hot deformation behavior and microstructural evolution of particulate-reinforced AA6061/B 4 C composite during compression at elevated temperature. Mater Sci Eng, A 696:248–256CrossRef Wang K, Li X, Li Q et al (2017) Hot deformation behavior and microstructural evolution of particulate-reinforced AA6061/B 4 C composite during compression at elevated temperature. Mater Sci Eng, A 696:248–256CrossRef
15.
go back to reference He A, Xie G, Zhang H et al (2014) A modified Zerilli–Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Mater Des 56:122–127CrossRef He A, Xie G, Zhang H et al (2014) A modified Zerilli–Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Mater Des 56:122–127CrossRef
16.
go back to reference Gurusamy MM, Rao BC (2017) On the performance of modified Zerilli–Armstrong constitutive model in simulating the metal-cutting process. J Manuf Process 28:253–265CrossRef Gurusamy MM, Rao BC (2017) On the performance of modified Zerilli–Armstrong constitutive model in simulating the metal-cutting process. J Manuf Process 28:253–265CrossRef
17.
go back to reference Zhang H, Wen W, Cui H et al (2009) A modified Zerilli–Armstrong model for alloy IC10 over a wide range of temperatures and strain rates. Mater Sci Eng, A 527:328–333CrossRef Zhang H, Wen W, Cui H et al (2009) A modified Zerilli–Armstrong model for alloy IC10 over a wide range of temperatures and strain rates. Mater Sci Eng, A 527:328–333CrossRef
18.
go back to reference Samantaray D, Mandal S, Borah U et al (2009) A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel. Mater Sci Eng, A 526:1–6CrossRef Samantaray D, Mandal S, Borah U et al (2009) A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel. Mater Sci Eng, A 526:1–6CrossRef
19.
go back to reference Paturi UMR, Narala SKR, Pundir RS (2014) Constitutive flow stress formulation, model validation and FE cutting simulation for AA7075-T6 aluminum alloy. Mater Sci Eng, A 605:176–185CrossRef Paturi UMR, Narala SKR, Pundir RS (2014) Constitutive flow stress formulation, model validation and FE cutting simulation for AA7075-T6 aluminum alloy. Mater Sci Eng, A 605:176–185CrossRef
20.
go back to reference Huang K, Logé RE (2016) A review of dynamic recrystallization phenomena in metallic materials. Mater Des 111:548–574CrossRef Huang K, Logé RE (2016) A review of dynamic recrystallization phenomena in metallic materials. Mater Des 111:548–574CrossRef
21.
go back to reference Ezatpour HR, Haddad Sabzevar M, Sajjadi SA et al (2014) Investigation of work softening mechanisms and texture in a hot deformed 6061 aluminum alloy at high temperature. Mater Sci Eng, A 606:240–247CrossRef Ezatpour HR, Haddad Sabzevar M, Sajjadi SA et al (2014) Investigation of work softening mechanisms and texture in a hot deformed 6061 aluminum alloy at high temperature. Mater Sci Eng, A 606:240–247CrossRef
22.
go back to reference Poletti C, Rodriguez-Hortalá M, Hauser M et al (2011) Microstructure development in hot deformed AA6082. Mater Sci Eng, A 528:2423–2430CrossRef Poletti C, Rodriguez-Hortalá M, Hauser M et al (2011) Microstructure development in hot deformed AA6082. Mater Sci Eng, A 528:2423–2430CrossRef
23.
go back to reference Kai X, Chen C, Sun X et al (2016) Hot deformation behavior and optimization of processing parameters of a typical high-strength Al–Mg–Si alloy. Mater Des 90:1151–1158CrossRef Kai X, Chen C, Sun X et al (2016) Hot deformation behavior and optimization of processing parameters of a typical high-strength Al–Mg–Si alloy. Mater Des 90:1151–1158CrossRef
24.
go back to reference Xiao G, Yang Q, Li L (2016) Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method. Trans Nonferrous Met Soc China 26:1096–1104CrossRef Xiao G, Yang Q, Li L (2016) Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method. Trans Nonferrous Met Soc China 26:1096–1104CrossRef
25.
go back to reference Li B, Pan Q, Yin Z (2014) Characterization of hot deformation behavior of as-homogenized Al–Cu–Li–Sc–Zr alloy using processing maps. Mater Sci Eng, A 614:199–206CrossRef Li B, Pan Q, Yin Z (2014) Characterization of hot deformation behavior of as-homogenized Al–Cu–Li–Sc–Zr alloy using processing maps. Mater Sci Eng, A 614:199–206CrossRef
26.
go back to reference Yang Q, Yang D, Zhang Z et al (2016) Flow behavior and microstructure evolution of 6A82 aluminium alloy with high copper content during hot compression deformation at elevated temperatures. Trans Nonferrous Met Soc China 26:649–657CrossRef Yang Q, Yang D, Zhang Z et al (2016) Flow behavior and microstructure evolution of 6A82 aluminium alloy with high copper content during hot compression deformation at elevated temperatures. Trans Nonferrous Met Soc China 26:649–657CrossRef
27.
go back to reference Mohamed FA, Langdon TG (1974) Deformation mechanism maps based on grain size. Metall Trans 5:2339–2345CrossRef Mohamed FA, Langdon TG (1974) Deformation mechanism maps based on grain size. Metall Trans 5:2339–2345CrossRef
28.
go back to reference Dong Y, Zhang C, Zhao G et al (2016) Constitutive equation and processing maps of an Al–Mg–Si aluminum alloy: determination and application in simulating extrusion process of complex profiles. Mater Des 92:983–997CrossRef Dong Y, Zhang C, Zhao G et al (2016) Constitutive equation and processing maps of an Al–Mg–Si aluminum alloy: determination and application in simulating extrusion process of complex profiles. Mater Des 92:983–997CrossRef
29.
go back to reference Huang X, Zhang H, Han Y et al (2010) Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature. Mater Sci Eng, A 527:485–490CrossRef Huang X, Zhang H, Han Y et al (2010) Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature. Mater Sci Eng, A 527:485–490CrossRef
30.
go back to reference Gourdet S, Montheillet F (2003) A model of continuous dynamic recrystallization. Acta Mater 51:2685–2699CrossRef Gourdet S, Montheillet F (2003) A model of continuous dynamic recrystallization. Acta Mater 51:2685–2699CrossRef
31.
go back to reference Orlová A, Dobeš F (2004) On the stress–subgrain size relationships derived from the composite model of dislocation structure. Mater Sci Eng, A 381:171–174CrossRef Orlová A, Dobeš F (2004) On the stress–subgrain size relationships derived from the composite model of dislocation structure. Mater Sci Eng, A 381:171–174CrossRef
32.
go back to reference Orlova A (1996) On the applied stress dependence of the subgrain size. Mater Sci Eng, A 220:117–122CrossRef Orlova A (1996) On the applied stress dependence of the subgrain size. Mater Sci Eng, A 220:117–122CrossRef
33.
go back to reference Lee WS, Tang ZC (2014) Relationship between mechanical properties and microstructural response of 6061-T6 aluminum alloy impacted at elevated temperatures. Mater Des 58:116–124CrossRef Lee WS, Tang ZC (2014) Relationship between mechanical properties and microstructural response of 6061-T6 aluminum alloy impacted at elevated temperatures. Mater Des 58:116–124CrossRef
34.
go back to reference Li Z, Wang B, Zhao S et al (2017) Dynamic deformation and failure of ultrafine-grained titanium. Acta Mater 125:210–218CrossRef Li Z, Wang B, Zhao S et al (2017) Dynamic deformation and failure of ultrafine-grained titanium. Acta Mater 125:210–218CrossRef
35.
go back to reference Gurrutxaga-Lerma B, Balint DS, Dini D et al (2015) The mechanisms governing the activation of dislocation sources in aluminum at different strain rates. J Mech Phys Solids 84:273–292CrossRef Gurrutxaga-Lerma B, Balint DS, Dini D et al (2015) The mechanisms governing the activation of dislocation sources in aluminum at different strain rates. J Mech Phys Solids 84:273–292CrossRef
36.
go back to reference Meyers MA (2002) Constitutive description of dynamic deformation physically-based mechanisms. Mater Sci Eng, A 322:194–216CrossRef Meyers MA (2002) Constitutive description of dynamic deformation physically-based mechanisms. Mater Sci Eng, A 322:194–216CrossRef
37.
go back to reference Voyiadjis GZ, Abed FH (2005) Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mech Mater 37:355–378CrossRef Voyiadjis GZ, Abed FH (2005) Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mech Mater 37:355–378CrossRef
38.
go back to reference Niewczas M, Jobba M, Mishra RK (2015) Thermally activated flow of dislocations in Al–Mg binary alloys. Acta Mater 83:372–382CrossRef Niewczas M, Jobba M, Mishra RK (2015) Thermally activated flow of dislocations in Al–Mg binary alloys. Acta Mater 83:372–382CrossRef
Metadata
Title
Characterization of hot deformation behavior and constitutive modeling of Al–Mg–Si–Mn–Cr alloy
Authors
Shuhui Liu
Qinglin Pan
Hang Li
Zhiqi Huang
Kuo Li
Xin He
Xinyu Li
Publication date
13-11-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3116-4

Other articles of this Issue 5/2019

Journal of Materials Science 5/2019 Go to the issue

Premium Partners