Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2024

07-04-2023 | Technical Article

Characterizing Laser-Modified Microstructures and Electrical and Mechanical Properties of Al-15.3%Si(wt.%) Alloys

Authors: Najma Bashir, Azmat Iqbal

Published in: Journal of Materials Engineering and Performance | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Characterization of metallic alloys is of significant interest for fundamental and practical prospects. In this manuscript, we report on the laser-ablation-modified electrical and mechanical properties of Al-15.3%Si(wt.%) alloys correlated with the grain refinement and micro/nanostructuring subjected to various KrF excimer laser pulses. Herein, the irradiation was performed in air at atmospheric pressure by varying laser pulses ranging from 100 to 500. For different laser pulses, the variation in the peak intensities, crystallite sizes, and dislocation line densities were investigated by using XRD techniques. The maximum decrease in grain size (21.21 nm) at 300 laser pulses and maximum increase in grain size (31.6 nm) at 500 laser pulses is observed. Surface morphological changes reveal that irradiated targets are modified by craters, cones, and molten, redeposit material in the form of ripples. Hydrodynamic sputtering, splashing, and exfoliation are the dominant ablation mechanisms. Non-uniform heat conduction takes place on the surfaces in the form of laser-induced cellular or columnar surface structures at maximum pulses. Four-Point Probe revealed that electrical resistivity increases firstly up to 300 laser pulses but at 500 pulses, an abrupt decrease in electrical resistivity is observed. The hardness was tested in three different zones, and it was discovered that the highest hardness was present in all samples of the heat-affected zone. The un-irradiated sample had a hardness value of 91.4 HV, which increased to 127.6 HV when the intensity of laser pulses was raised to 300. Irradiated samples with 400 and 500 laser pulses had lower hardness and dislocation defect density, which was attributed to irradiation-induced annealing. The results are believed to be beneficial in the surface engineering of materials for practical applications such as the electronics, automobile, and aerospace industries. Particularly, they are more important in the automotive body structuring and aviation sector because of their excellent role in providing fuel saving and preventing spare parts from corrosion resistance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Trzcinski, M. Gazda, J. Karczewski, A. Cenian, G.M. Grigorian, and M. Sawczak, “Pulsed Laser Deposition of Bismuth Vanadate Thin Films-The Effect of Oxygen Pressure on the Morphology, Composition, and Photoelectrochemical Performance, Materials, 2020, 13, p 1360.ADSPubMedPubMedCentralCrossRef K. Trzcinski, M. Gazda, J. Karczewski, A. Cenian, G.M. Grigorian, and M. Sawczak, “Pulsed Laser Deposition of Bismuth Vanadate Thin Films-The Effect of Oxygen Pressure on the Morphology, Composition, and Photoelectrochemical Performance, Materials, 2020, 13, p 1360.ADSPubMedPubMedCentralCrossRef
2.
go back to reference A. Piqué, R. Auyeung, H. Kim, A.N. Charipar, and S.A. Mathews, Laser 3D Micro-Manufacturing, J. Phys. D Appl. Phys., 2016, 49, p 110–118.CrossRef A. Piqué, R. Auyeung, H. Kim, A.N. Charipar, and S.A. Mathews, Laser 3D Micro-Manufacturing, J. Phys. D Appl. Phys., 2016, 49, p 110–118.CrossRef
3.
go back to reference N. Ali, S. Bashir, U.-I. Kalsoom, N. Begumm, and S.W. Ahmad, Surface, Structural and Mechanical Properties of Zirconium Ablated by KrF Excimer Laser Radiation, Quant. Electron., 2016, 46, p 1015–1022.ADSCrossRef N. Ali, S. Bashir, U.-I. Kalsoom, N. Begumm, and S.W. Ahmad, Surface, Structural and Mechanical Properties of Zirconium Ablated by KrF Excimer Laser Radiation, Quant. Electron., 2016, 46, p 1015–1022.ADSCrossRef
4.
go back to reference Y.F. Lu, W.D. Song, Z.M. Ren, C.W. An, D.M. Liu, W.J. Wang, B.J. Cho, J.N. Zeng, and C.F. Tan, Advanced Laser Applications in Microelectronics and Data Storage Devices, J. Laser Appl., 2016, 2, p 12–20. Y.F. Lu, W.D. Song, Z.M. Ren, C.W. An, D.M. Liu, W.J. Wang, B.J. Cho, J.N. Zeng, and C.F. Tan, Advanced Laser Applications in Microelectronics and Data Storage Devices, J. Laser Appl., 2016, 2, p 12–20.
5.
go back to reference G. Anna, I. Ciriolo, R.M. Vázquez, A. Roversi, A. Frezzotti, C. Vozzi, R. Osellame, and S. Stagira, Femtosecond Laser-Micromachining of Glass Micro-Chip for High Order Harmonic Generation in Gases, Micromachines, 2020, 5, p 2–9. G. Anna, I. Ciriolo, R.M. Vázquez, A. Roversi, A. Frezzotti, C. Vozzi, R. Osellame, and S. Stagira, Femtosecond Laser-Micromachining of Glass Micro-Chip for High Order Harmonic Generation in Gases, Micromachines, 2020, 5, p 2–9.
6.
go back to reference V.V. Vasilenko, V.I. Polskij, P.S. Dzhumaev, V.N. Petrovskij, and V.L. Yakushin, Surface Hardening Low Alloy Structural Steel by Laser Welding, in 15th International School-Conference New Materials-Materials of Innovative Energy: Development, Characterization Methods and Application, KnE Mater. Sci., 2017, 6, p 440–450. V.V. Vasilenko, V.I. Polskij, P.S. Dzhumaev, V.N. Petrovskij, and V.L. Yakushin, Surface Hardening Low Alloy Structural Steel by Laser Welding, in 15th International School-Conference New Materials-Materials of Innovative Energy: Development, Characterization Methods and Application, KnE Mater. Sci., 2017, 6, p 440–450.
7.
go back to reference C.S. Petrovi, S.D. Peru, P. Pelicon, C.J. Kova, and C.M. Mitri, Laser-Induced Surface Alloying in Nanosized Ni/Ti Multilayer Structures, Appl. Surf. Sci., 2013, 264, p 273–279.ADSCrossRef C.S. Petrovi, S.D. Peru, P. Pelicon, C.J. Kova, and C.M. Mitri, Laser-Induced Surface Alloying in Nanosized Ni/Ti Multilayer Structures, Appl. Surf. Sci., 2013, 264, p 273–279.ADSCrossRef
8.
go back to reference E.A. Starke Jr. and J.T. Staley, Application of Modern Aluminum Alloy to Aircrafts, Prog. Aerosp. Sci., 1996, 32, p 131–172.CrossRef E.A. Starke Jr. and J.T. Staley, Application of Modern Aluminum Alloy to Aircrafts, Prog. Aerosp. Sci., 1996, 32, p 131–172.CrossRef
9.
go back to reference Y. Yang and J.D. Hu, Effects of Laser Power Density on the Microstructure and Microhardness of Ni-Al Alloyed Layer by Pulsed Laser Irradiation, Opt. Laser Technol., 2011, 43, p 138–142.ADSCrossRef Y. Yang and J.D. Hu, Effects of Laser Power Density on the Microstructure and Microhardness of Ni-Al Alloyed Layer by Pulsed Laser Irradiation, Opt. Laser Technol., 2011, 43, p 138–142.ADSCrossRef
10.
go back to reference J. Susnik, R. Sturm, and J. Grum, Influence of Laser Surface Remelting on Al-Si Alloy Properties, J. Mechan. Eng., 2012, 58, p 614–620.CrossRef J. Susnik, R. Sturm, and J. Grum, Influence of Laser Surface Remelting on Al-Si Alloy Properties, J. Mechan. Eng., 2012, 58, p 614–620.CrossRef
11.
go back to reference A. Biswas, B.L. Mordike, I. Manna, J. Dutta Majumda, A.F.M. Arif, C. Karats, and K. Raza, Studies on Laser Surface Melting of Al-11% Si Alloy, Lasers Eng., 2009, 8, p 95–105. A. Biswas, B.L. Mordike, I. Manna, J. Dutta Majumda, A.F.M. Arif, C. Karats, and K. Raza, Studies on Laser Surface Melting of Al-11% Si Alloy, Lasers Eng., 2009, 8, p 95–105.
12.
go back to reference A. Nassar, M.A. Taha, and F.A. Saadallah, Surface Hardening of Hypereutectic Al- Si Alloy Treated by Nd: YAG Laser, Middle East J. Appl. Sci., 2015, 5, p 31–35. A. Nassar, M.A. Taha, and F.A. Saadallah, Surface Hardening of Hypereutectic Al- Si Alloy Treated by Nd: YAG Laser, Middle East J. Appl. Sci., 2015, 5, p 31–35.
13.
go back to reference A.T. Zayed, Laser Surface Treatments of Steel and Aluminum Alloys, Thesis, Baghdad University, Baghdad, M.Sc, 2003. A.T. Zayed, Laser Surface Treatments of Steel and Aluminum Alloys, Thesis, Baghdad University, Baghdad, M.Sc, 2003.
14.
go back to reference S.A. Mohammed, Study the Effect of Laser Surface Treatment On Aluminum Alloys. M. Sc. Thesis, University of Technology, Baghdad, (2004). S.A. Mohammed, Study the Effect of Laser Surface Treatment On Aluminum Alloys. M. Sc. Thesis, University of Technology, Baghdad, (2004).
15.
go back to reference S. Maryam and F. Bashir, Effect of Laser Irradiation on Surface Hardness and Structural Parameters of 7178 Aluminium Alloy, Mater. Res. Exp., 2018, 5, p 1–9. S. Maryam and F. Bashir, Effect of Laser Irradiation on Surface Hardness and Structural Parameters of 7178 Aluminium Alloy, Mater. Res. Exp., 2018, 5, p 1–9.
16.
go back to reference M.K. Abbas and A.K. Mahmoud, Laser Surface Treatment of Al-12%Si Alloy, Mater. Today Proc., 2017, 4, p 9992–9996.CrossRef M.K. Abbas and A.K. Mahmoud, Laser Surface Treatment of Al-12%Si Alloy, Mater. Today Proc., 2017, 4, p 9992–9996.CrossRef
17.
go back to reference K. Nayat and S. Oskayama, Penetration and Energy-Loss Theory of Electrons in Solid Targets, J. Phys. D Appl. Phys., 1972, 5, p 43–57.ADSCrossRef K. Nayat and S. Oskayama, Penetration and Energy-Loss Theory of Electrons in Solid Targets, J. Phys. D Appl. Phys., 1972, 5, p 43–57.ADSCrossRef
18.
go back to reference Z. Wang, H. Wang, X. Li, D. Wang, Q. Zhang, G. Chen, and Z. Ren, Aluminum and Silicon Based Phase Change Materials for High Capacity Thermal Energy Storage, Appl. Thermal Eng., 2015, 89, p 204–208.CrossRef Z. Wang, H. Wang, X. Li, D. Wang, Q. Zhang, G. Chen, and Z. Ren, Aluminum and Silicon Based Phase Change Materials for High Capacity Thermal Energy Storage, Appl. Thermal Eng., 2015, 89, p 204–208.CrossRef
19.
go back to reference B. Dang, Z. Jian, J. Xu, and S. Li, Density and Solidification Shrinkage of Hypereutectic Al–Si Alloys, Int. J. Mater. Res., 2017, 10, p 815–819.CrossRef B. Dang, Z. Jian, J. Xu, and S. Li, Density and Solidification Shrinkage of Hypereutectic Al–Si Alloys, Int. J. Mater. Res., 2017, 10, p 815–819.CrossRef
20.
go back to reference B.M. Angadi and C.R. Hiremath, Studies on the Thermal Properties of Hypereutectic Al–Si Alloys by Using Transient Method, J. Mechan. Eng. Res. Technol., 2014, 2, p 536–544. B.M. Angadi and C.R. Hiremath, Studies on the Thermal Properties of Hypereutectic Al–Si Alloys by Using Transient Method, J. Mechan. Eng. Res. Technol., 2014, 2, p 536–544.
21.
go back to reference U.-I. Kalsoom, N. Ali, S. Bashir, A.M. Alsheri, and N. Begaum, Study of Micro/Nano Structuring and Mechanical Properties of KrF Excimer Laser Irradiated Al for Aerospace Industry and Surface Engineering Applications, Materials, 2021, 14, p 1–22. U.-I. Kalsoom, N. Ali, S. Bashir, A.M. Alsheri, and N. Begaum, Study of Micro/Nano Structuring and Mechanical Properties of KrF Excimer Laser Irradiated Al for Aerospace Industry and Surface Engineering Applications, Materials, 2021, 14, p 1–22.
22.
go back to reference F.B. Meng, H.J. Huang, X.G. Yuan, Z.W. Cui, and X.L. Hu, Effect of Si Addition on Microstructure and Mechanical Properties of Al-Mg-Si-Zn Alloy, Res. Develop., 2020, 17, p 15–20. F.B. Meng, H.J. Huang, X.G. Yuan, Z.W. Cui, and X.L. Hu, Effect of Si Addition on Microstructure and Mechanical Properties of Al-Mg-Si-Zn Alloy, Res. Develop., 2020, 17, p 15–20.
23.
go back to reference H. Latif, M.S. Rafique, M. Shahid, K.-U. Rahaman, M. Rawat, R.S. Sattar, A.N. Shahzad, and P. Lee, Impact of Laser Produced X-rays on the Surface of Gold, Appl. Surface Sci., 2008, 254, p 7505–7511.ADSCrossRef H. Latif, M.S. Rafique, M. Shahid, K.-U. Rahaman, M. Rawat, R.S. Sattar, A.N. Shahzad, and P. Lee, Impact of Laser Produced X-rays on the Surface of Gold, Appl. Surface Sci., 2008, 254, p 7505–7511.ADSCrossRef
24.
go back to reference J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, and S.J. Lin, Anomalous Decrease in X-ray Diffraction Intensities of Cu–Ni–Al–Co–Cr–Fe–Si Alloy Systems with Multi-Principal Elements, Mater. Chem. Phys., 2007, 103, p 41–45.CrossRef J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, and S.J. Lin, Anomalous Decrease in X-ray Diffraction Intensities of Cu–Ni–Al–Co–Cr–Fe–Si Alloy Systems with Multi-Principal Elements, Mater. Chem. Phys., 2007, 103, p 41–45.CrossRef
25.
go back to reference J.M. Myoung, W.H. Yoon, D.H. Lee, I. Yun, S.H. Bae, and S.Y. Lee, Effects of Thickness Variation on Properties of ZnO Thin Films Grown by Pulsed Laser Deposition, Japan. J. Appl. Phys., 2002, 41, p 28–31.ADSCrossRef J.M. Myoung, W.H. Yoon, D.H. Lee, I. Yun, S.H. Bae, and S.Y. Lee, Effects of Thickness Variation on Properties of ZnO Thin Films Grown by Pulsed Laser Deposition, Japan. J. Appl. Phys., 2002, 41, p 28–31.ADSCrossRef
26.
go back to reference B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction 3rd ed Prentice Hall, Englewood Cliffs, NJ, p. 388 (2001) B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction 3rd ed Prentice Hall, Englewood Cliffs, NJ, p. 388 (2001)
27.
go back to reference S. Venkatachalam, R. Kumar, D. Mangalaraj, S.K. Narayandass, K. Kim, and J. Yi, Optoelectronic Properties of Zn0.52Se 0.48/Si Schottky Diodes, Solid-State Electron., 2004, 48, p 2219–2223.ADSCrossRef S. Venkatachalam, R. Kumar, D. Mangalaraj, S.K. Narayandass, K. Kim, and J. Yi, Optoelectronic Properties of Zn0.52Se 0.48/Si Schottky Diodes, Solid-State Electron., 2004, 48, p 2219–2223.ADSCrossRef
28.
go back to reference A.R. Stokes and A.J.C. Wilson, The Diffraction of X Rays by Distorted Crystal Aggregates-I, Proc. Phys. Soc., 1943, 56, p 174–181.ADSCrossRef A.R. Stokes and A.J.C. Wilson, The Diffraction of X Rays by Distorted Crystal Aggregates-I, Proc. Phys. Soc., 1943, 56, p 174–181.ADSCrossRef
29.
go back to reference N. Ali, S. Bashir, M. Umm-i-Kalsoom, and K.M. Akram, Effect of Dry and Wet Ambient Environment on the Pulsed Laser Ablation of Titanium, Appl. Surface Sci., 2013, 270, p 49–57.ADSCrossRef N. Ali, S. Bashir, M. Umm-i-Kalsoom, and K.M. Akram, Effect of Dry and Wet Ambient Environment on the Pulsed Laser Ablation of Titanium, Appl. Surface Sci., 2013, 270, p 49–57.ADSCrossRef
30.
go back to reference F. Lasagni and H.P. Degischer, Enhanced Young’s Modulus of AlSi Alloys and Reinforced Matrices by Co-continuous Structures, J. Compos. Mater., 2010, 44, p 740–755.CrossRef F. Lasagni and H.P. Degischer, Enhanced Young’s Modulus of AlSi Alloys and Reinforced Matrices by Co-continuous Structures, J. Compos. Mater., 2010, 44, p 740–755.CrossRef
31.
go back to reference J. Gubicza, Correlation between Processing Conditions, Lattice Defect Structure and Mechanical Performance of Ultrafine-Grained Materials, Proc. Int. Sympos. Phys. Mater., 2015, 128, p 479–486. J. Gubicza, Correlation between Processing Conditions, Lattice Defect Structure and Mechanical Performance of Ultrafine-Grained Materials, Proc. Int. Sympos. Phys. Mater., 2015, 128, p 479–486.
32.
go back to reference F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia, Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling, Acta Mater., 2003, 51, p 2777–2791.ADSCrossRef F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia, Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling, Acta Mater., 2003, 51, p 2777–2791.ADSCrossRef
33.
go back to reference F. Suna, S. Bhattacharyaa, G.P. Dindac, A. Dasguptac, and J. Mazumdera, “Influence of Processing Parameters on Lattice Parameters in Laser Deposited Tool Alloy Steel, Mater. Sci. Eng., 2011, 15, p 5141–5145.CrossRef F. Suna, S. Bhattacharyaa, G.P. Dindac, A. Dasguptac, and J. Mazumdera, “Influence of Processing Parameters on Lattice Parameters in Laser Deposited Tool Alloy Steel, Mater. Sci. Eng., 2011, 15, p 5141–5145.CrossRef
34.
go back to reference A. Latif, M. Khaleeq-Ur-Rahman, K. Bhatti, M. Rafique, and Z. Rizvi, IR and UV Irradiations on Ion Bombarded Polycrystalline Silver, Phys. B Condens. Matter., 2010, 405, p 4250–4255.ADSCrossRef A. Latif, M. Khaleeq-Ur-Rahman, K. Bhatti, M. Rafique, and Z. Rizvi, IR and UV Irradiations on Ion Bombarded Polycrystalline Silver, Phys. B Condens. Matter., 2010, 405, p 4250–4255.ADSCrossRef
35.
go back to reference V.N. Gurarie, P.H. Otsuka, D.N. Jamieson, and S. Prawe, Crack-Arresting Compression Layers Produced by Ion Implantation, Nuclear Inst. Methods Phys. Res. Sect. B Beam Int. Mater. Atoms, 2006, 242, p 421–423.ADSCrossRef V.N. Gurarie, P.H. Otsuka, D.N. Jamieson, and S. Prawe, Crack-Arresting Compression Layers Produced by Ion Implantation, Nuclear Inst. Methods Phys. Res. Sect. B Beam Int. Mater. Atoms, 2006, 242, p 421–423.ADSCrossRef
36.
go back to reference U.-I. Kalsoom, R. Ahmad, N. Ali, I.A. Khan, S. Saleem, U. Ikhlaq, and N. Khan, Effect of Power and Nitrogen Content on the Deposition of CrN Films by Using Pulsed DC Magnetron Sputtering Plasma, Plasma Sci. Technol., 2013, 15, p 666–672.ADSCrossRef U.-I. Kalsoom, R. Ahmad, N. Ali, I.A. Khan, S. Saleem, U. Ikhlaq, and N. Khan, Effect of Power and Nitrogen Content on the Deposition of CrN Films by Using Pulsed DC Magnetron Sputtering Plasma, Plasma Sci. Technol., 2013, 15, p 666–672.ADSCrossRef
37.
go back to reference S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B.L. Davies, L. Hallo, P. Nicolai, and V.T. Tikhonchuk, Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal Evidence of Multimegabar Pressures, Phys. Rev., 2006, 96, p 166101. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B.L. Davies, L. Hallo, P. Nicolai, and V.T. Tikhonchuk, Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal Evidence of Multimegabar Pressures, Phys. Rev., 2006, 96, p 166101.
38.
go back to reference S. Kradolfer, K. Heutschi, J. Koch, and D. Günther, Tracking Mass Removal of Portable Laser Ablation Sampling by its Acoustic Response”, Spectroch. Acta Part B Atom. Spectros., 2021, 179, p 106118.CrossRef S. Kradolfer, K. Heutschi, J. Koch, and D. Günther, Tracking Mass Removal of Portable Laser Ablation Sampling by its Acoustic Response”, Spectroch. Acta Part B Atom. Spectros., 2021, 179, p 106118.CrossRef
39.
go back to reference M. Jelani, S. Bashir, M. Khaleeq-ur-Rehman, R. Ahmad, Y.D. Faizan-ul-Haq, M. Akram, N. Afzal, M.U. Chaudhry, K. Mahmood, and A. Hayat, Effect of Laser Fuence on Surface, Structural and Mechanical Properties of Zr After Irradiation in the Ambient Environment of Oxygen, Europ. Phys. J. D, 2013, 67, p 159.ADSCrossRef M. Jelani, S. Bashir, M. Khaleeq-ur-Rehman, R. Ahmad, Y.D. Faizan-ul-Haq, M. Akram, N. Afzal, M.U. Chaudhry, K. Mahmood, and A. Hayat, Effect of Laser Fuence on Surface, Structural and Mechanical Properties of Zr After Irradiation in the Ambient Environment of Oxygen, Europ. Phys. J. D, 2013, 67, p 159.ADSCrossRef
40.
go back to reference D. Yousaf, S. Bashir, M. Akram, U.-I. Kalsooma, and N. Ali, Laser Irradiation Effects on the Surface, Structural and Mechanical Properties ofAl–Cu Alloy 2024, Radiat. Effects Defects Solids., 2013, 169, p 144–156.ADSCrossRef D. Yousaf, S. Bashir, M. Akram, U.-I. Kalsooma, and N. Ali, Laser Irradiation Effects on the Surface, Structural and Mechanical Properties ofAl–Cu Alloy 2024, Radiat. Effects Defects Solids., 2013, 169, p 144–156.ADSCrossRef
41.
go back to reference W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi, Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism, Mater. Sci. Eng. A, 2016, 663, p 116–125.CrossRef W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi, Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism, Mater. Sci. Eng. A, 2016, 663, p 116–125.CrossRef
42.
go back to reference E. Lee and B. Mishra, Effect of Solidification Cooling Rate on Mechanical Properties and Microstructure of Al-Si-Mn-Mg Alloy, Mater. Trans., 2017, 58, p 1624–1627.CrossRef E. Lee and B. Mishra, Effect of Solidification Cooling Rate on Mechanical Properties and Microstructure of Al-Si-Mn-Mg Alloy, Mater. Trans., 2017, 58, p 1624–1627.CrossRef
43.
go back to reference M.S. Rafique, M.K. Rahman, T. Firdos, K. Aslam, M.S. Anwar, M. Imran, and H. Latif, XRD and SEM Analysis of a Laser-Irradiated Cadmium, Laser Phys., 2007, 17, p 1–7.CrossRef M.S. Rafique, M.K. Rahman, T. Firdos, K. Aslam, M.S. Anwar, M. Imran, and H. Latif, XRD and SEM Analysis of a Laser-Irradiated Cadmium, Laser Phys., 2007, 17, p 1–7.CrossRef
44.
go back to reference X. Wang and X. Xu, “Thermoplastic Waves Induced by Pulsed Laser Heating, Appl. Phys. A, 2001, 73(1), p 107–114.ADSCrossRef X. Wang and X. Xu, “Thermoplastic Waves Induced by Pulsed Laser Heating, Appl. Phys. A, 2001, 73(1), p 107–114.ADSCrossRef
45.
go back to reference L.L. Bin, L.T. Cheng, L. Yong, and L. Qiang, Variation of Morphology and Color of VO2 thin Films Induced by Excimer Laser”, Nuclear Instrum, Methods Phys. Res. Sect. B, 2002, 191, p 102–105.ADS L.L. Bin, L.T. Cheng, L. Yong, and L. Qiang, Variation of Morphology and Color of VO2 thin Films Induced by Excimer Laser”, Nuclear Instrum, Methods Phys. Res. Sect. B, 2002, 191, p 102–105.ADS
46.
go back to reference K. Zhang and G.N. Chen, “Grain Structure of Laser Remelted 7075 Aluminium Alloy in Presence of Al2O3 Particles, Mater. Sci. Technol., 2001, 17, p 668–670.ADSCrossRef K. Zhang and G.N. Chen, “Grain Structure of Laser Remelted 7075 Aluminium Alloy in Presence of Al2O3 Particles, Mater. Sci. Technol., 2001, 17, p 668–670.ADSCrossRef
47.
go back to reference H. Zhang, Z. Zhang, and T.M. Yue, The Pseudo-Eutectic Microstructure and Enhanced Properties in Laser-Cladded Hypereutectic Ti–20%Si, Coat. Metals., 2017, 7, p 33.CrossRef H. Zhang, Z. Zhang, and T.M. Yue, The Pseudo-Eutectic Microstructure and Enhanced Properties in Laser-Cladded Hypereutectic Ti–20%Si, Coat. Metals., 2017, 7, p 33.CrossRef
48.
go back to reference G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Evolution of Microstructure in Laser Deposited Al-11.28%Si Alloy, Surface Coat. Technol., 2012, 206, p 2152–2160.CrossRef G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Evolution of Microstructure in Laser Deposited Al-11.28%Si Alloy, Surface Coat. Technol., 2012, 206, p 2152–2160.CrossRef
49.
go back to reference M.Z. Butt, M. Dilawar Ali, S. Usman, and T. Naseem, Surface Roughness and Electrical Resistivity of High-Purity Zinc Irradiated with Nanosecond Visible Laser Pulses, Appl. Surface Sci., 2014, 305, p 466–473.ADSCrossRef M.Z. Butt, M. Dilawar Ali, S. Usman, and T. Naseem, Surface Roughness and Electrical Resistivity of High-Purity Zinc Irradiated with Nanosecond Visible Laser Pulses, Appl. Surface Sci., 2014, 305, p 466–473.ADSCrossRef
50.
go back to reference A. Latif, K.A. Bhatti, M. Khaleeq-Ur-Rahman, and M.S. Rafique, Effect of UV Irradiation on the Structural, Optical and Electrical Properties of Platinum, Radiat. Effects Defects Solids, 2012, 167, p 929–936.ADSCrossRef A. Latif, K.A. Bhatti, M. Khaleeq-Ur-Rahman, and M.S. Rafique, Effect of UV Irradiation on the Structural, Optical and Electrical Properties of Platinum, Radiat. Effects Defects Solids, 2012, 167, p 929–936.ADSCrossRef
51.
go back to reference S. Bashir, M.S. Rafique, M. Khaleeq-Ur Rahman Faizan ul Haq, and B. R. Alvina, CO2 and Nd:YAG Laser Radiation Induced Damage in Aluminum. 15, 181–192 (2006) S. Bashir, M.S. Rafique, M. Khaleeq-Ur Rahman Faizan ul Haq, and B. R. Alvina, CO2 and Nd:YAG Laser Radiation Induced Damage in Aluminum. 15, 181–192 (2006)
52.
go back to reference H. Bishara, S. Lee, T. Brink, M. Ghidelli, and G. Dehm, Understanding Grain Boundary Electrical Resistivity in Cu: the Effect of Boundary Structure, ACS Nano, 2021, 15, p 16607–16615.PubMedPubMedCentralCrossRef H. Bishara, S. Lee, T. Brink, M. Ghidelli, and G. Dehm, Understanding Grain Boundary Electrical Resistivity in Cu: the Effect of Boundary Structure, ACS Nano, 2021, 15, p 16607–16615.PubMedPubMedCentralCrossRef
53.
go back to reference M. Vopasroiu, M.J. Thwaites, G.V. Fernandez, S. Lepadtu, and K.O. Grady, Grain Size Effects in Metallic Thin Films Prepared Using A New Sputtering Technology, J. Optoelectron. Adv. Mater., 2005, 7, p 2713–2720. M. Vopasroiu, M.J. Thwaites, G.V. Fernandez, S. Lepadtu, and K.O. Grady, Grain Size Effects in Metallic Thin Films Prepared Using A New Sputtering Technology, J. Optoelectron. Adv. Mater., 2005, 7, p 2713–2720.
54.
go back to reference O. Ivanov, O. Maradudina, and R. Lyubushkin, Grain size Effect on Electrical Resistivity Electrical Resistivity of Bulk Nano-Grained Bi2Te3 Material, Mater. Characteriz., 2015, 99, p 175–179.CrossRef O. Ivanov, O. Maradudina, and R. Lyubushkin, Grain size Effect on Electrical Resistivity Electrical Resistivity of Bulk Nano-Grained Bi2Te3 Material, Mater. Characteriz., 2015, 99, p 175–179.CrossRef
55.
go back to reference M.Z. Butt, D. Ali, F. Bashir, and M. Ishtiaq, Effects of IR Laser Shots on the Surface Hardness and Electrical Resistivity of High-Purity Iron, J. Mater. Eng. Perform., 2014, 23, p 772–777.CrossRef M.Z. Butt, D. Ali, F. Bashir, and M. Ishtiaq, Effects of IR Laser Shots on the Surface Hardness and Electrical Resistivity of High-Purity Iron, J. Mater. Eng. Perform., 2014, 23, p 772–777.CrossRef
56.
go back to reference H. Kaya, U. Boyuk, E. Cadırli, and N. Marasli, Measurements of the Microhardness, Electrical and Thermal Properties of the Al-Ni Eutectic Alloy, Mater. Des., 2012, 34, p 707–712.CrossRef H. Kaya, U. Boyuk, E. Cadırli, and N. Marasli, Measurements of the Microhardness, Electrical and Thermal Properties of the Al-Ni Eutectic Alloy, Mater. Des., 2012, 34, p 707–712.CrossRef
57.
go back to reference H. Kaya, U. Boyuk, E. Cadırli, and N. Marasli, Influence of Growth Rate on Microstructure, Microhardness, and Electrical Resistivity of Directionally Solidified Al-7 wt.% Ni Hypo-Eutectic Alloy, Metals Mater. Interact., 2013, 19, p 39–44.ADSCrossRef H. Kaya, U. Boyuk, E. Cadırli, and N. Marasli, Influence of Growth Rate on Microstructure, Microhardness, and Electrical Resistivity of Directionally Solidified Al-7 wt.% Ni Hypo-Eutectic Alloy, Metals Mater. Interact., 2013, 19, p 39–44.ADSCrossRef
58.
go back to reference K.H. Michael and J.K. Yu Leung, Theoretical and Experimental Studies on Laser Transformation Hardening of Steel by Customized Beam, Int. J. Heat Mass Transfer, 2007, 50, p 4600–4606.CrossRef K.H. Michael and J.K. Yu Leung, Theoretical and Experimental Studies on Laser Transformation Hardening of Steel by Customized Beam, Int. J. Heat Mass Transfer, 2007, 50, p 4600–4606.CrossRef
59.
go back to reference S.N. Naik and S.M. Walley, The Hall Patch and Inverse Hall Patch Relations and the Hardness of Non-Crystalline Metals, J. Mater. Sci., 2020, 55, p 2661–2681.ADSCrossRef S.N. Naik and S.M. Walley, The Hall Patch and Inverse Hall Patch Relations and the Hardness of Non-Crystalline Metals, J. Mater. Sci., 2020, 55, p 2661–2681.ADSCrossRef
60.
go back to reference R.R. Baracaldo, J.M. Cabrera Marrero, and J.A.B. Páramo, Studying the Hall-Petch Effect Regarding Sub-Micrometer Steel (0.6% C), Ingen. Investigat., 2011, 31, p 112–120. R.R. Baracaldo, J.M. Cabrera Marrero, and J.A.B. Páramo, Studying the Hall-Petch Effect Regarding Sub-Micrometer Steel (0.6% C), Ingen. Investigat., 2011, 31, p 112–120.
61.
go back to reference M.G. Kalhapure and P.M. Dighe, Impact of Silicon Content on Mechanical Properties of Aluminum Alloys, Int. J. Sci. Res. (IJSR), 2013, 4, p 38–40. M.G. Kalhapure and P.M. Dighe, Impact of Silicon Content on Mechanical Properties of Aluminum Alloys, Int. J. Sci. Res. (IJSR), 2013, 4, p 38–40.
62.
go back to reference M.Z. Butt, F. Bashir and S. Arooj, Effect of UV Laser Irradiation on the Hardness and Structural Parameters of AgxPd1-x (0.4 ≤ × ≤ 0.6) Alloys, Appl. Surf. Sci., 2012, 259, p 740–746.ADSCrossRef M.Z. Butt, F. Bashir and S. Arooj, Effect of UV Laser Irradiation on the Hardness and Structural Parameters of AgxPd1-x (0.4 ≤ × ≤ 0.6) Alloys, Appl. Surf. Sci., 2012, 259, p 740–746.ADSCrossRef
Metadata
Title
Characterizing Laser-Modified Microstructures and Electrical and Mechanical Properties of Al-15.3%Si(wt.%) Alloys
Authors
Najma Bashir
Azmat Iqbal
Publication date
07-04-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08148-1

Other articles of this Issue 5/2024

Journal of Materials Engineering and Performance 5/2024 Go to the issue

Premium Partners