Skip to main content
Top

2020 | OriginalPaper | Chapter

Chemical, Physical and Biological Treatments of Pineapple Leaf Fibres

Authors : F. N. M. Padzil, Z. M. A. Ainun, Naziratulasikin Abu Kassim, S. H. Lee, C. H. Lee, Hidayah Ariffin, Edi Syams Zainudin

Published in: Pineapple Leaf Fibers

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pineapple leaves are known as organic wastes that left behind after pineapple fruit have been harvested. In Malaysia, waste management of these leaves is improving time to time, whereby the leaves are collected and consigned for research and industry utilization. Based on studies, pineapple leaf contains an amount of 2.5–3.5% of fibres that layered by hydrophobic waxy substances. The fibres of pineapple leaf (PALF) are extracted and beneficial in textile industry since eighteenth century. In order to optimised the usage of the PALF in high technology application which not only in textile industry, thus, numerous chemicals, physicals and biological or even combination of fibre treatments are applied by researchers and industrial players. For instance, the PALF is recognized as suitable candidates as reinforcing agent in polymeric matrices due to its high specific strength and sustainability. It is proved that attributable to inexpensive, abundant and good mechanical strength obtained by controlling the treatment methods has positioned the PALF as popular fibres in the development of functionalized smart and intelligent products.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Abd Razak SI, Ahmad Sharif NF, Mat Nayan NH et al (2015) Impregnation of poly (lactic acid) on biologically pulped pineapple leaf fiber for packaging materials. BioRes 10(3):4350–4359CrossRef Abd Razak SI, Ahmad Sharif NF, Mat Nayan NH et al (2015) Impregnation of poly (lactic acid) on biologically pulped pineapple leaf fiber for packaging materials. BioRes 10(3):4350–4359CrossRef
3.
go back to reference Araujo R, Casal M, Cavaco-Paulo (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26(5):332–349 Araujo R, Casal M, Cavaco-Paulo (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26(5):332–349
4.
go back to reference Aremu MO, Rafiu MA, Adedeji KK (2015) Pulp and paper production from nigerian pineapple leaves and corn straw as substitute to wood source. Int Res J Eng Technol 2(4) Aremu MO, Rafiu MA, Adedeji KK (2015) Pulp and paper production from nigerian pineapple leaves and corn straw as substitute to wood source. Int Res J Eng Technol 2(4)
5.
go back to reference Asim M, Jawaid M, Abdan K et al (2018) Effect of alkali treatment on physical and mechanical strength of pineapple leaf fibres. IOP Conf Ser: Mater Sci Eng 290:012030CrossRef Asim M, Jawaid M, Abdan K et al (2018) Effect of alkali treatment on physical and mechanical strength of pineapple leaf fibres. IOP Conf Ser: Mater Sci Eng 290:012030CrossRef
6.
go back to reference Asim M, Khalina Abdan M, Jawaid M et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 1–16 Asim M, Khalina Abdan M, Jawaid M et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 1–16
7.
go back to reference Bachtiar D, Sapuan SM, Hamdan MM (2008) The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Mater Des 29(7):1285–1290CrossRef Bachtiar D, Sapuan SM, Hamdan MM (2008) The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Mater Des 29(7):1285–1290CrossRef
8.
go back to reference Banerjee R, Chintagunta AD, Ray S (2019) Laccase mediated delignification of pineapple leaf waste: an ecofriendly sustainable attempt towards valorization. BMC Chem 13:58CrossRef Banerjee R, Chintagunta AD, Ray S (2019) Laccase mediated delignification of pineapple leaf waste: an ecofriendly sustainable attempt towards valorization. BMC Chem 13:58CrossRef
9.
go back to reference Banik S, Nag D, Debnath S (2011) Utilization of pineapple leaf agro-waste for extraction of fibre and the residual biomass for vermicomposting. Ind J Fibre Text Res 36:172–177 Banik S, Nag D, Debnath S (2011) Utilization of pineapple leaf agro-waste for extraction of fibre and the residual biomass for vermicomposting. Ind J Fibre Text Res 36:172–177
10.
go back to reference Buana MSAS, Pasbaskhsh P, Goh KL et al (2013) Elasticity, microstructure and thermal stability of foliage and fruit fibres from four tropical crops. Fibers Polym 14(4):623–629CrossRef Buana MSAS, Pasbaskhsh P, Goh KL et al (2013) Elasticity, microstructure and thermal stability of foliage and fruit fibres from four tropical crops. Fibers Polym 14(4):623–629CrossRef
11.
go back to reference Buchert J, Pere J, Puolakka A et al (2000) Scouring of cotton with pectinases, proteases, and lipases. Textile Chem Colorist Am Dyestuff Report 32(5) Buchert J, Pere J, Puolakka A et al (2000) Scouring of cotton with pectinases, proteases, and lipases. Textile Chem Colorist Am Dyestuff Report 32(5)
12.
go back to reference Buschle-Diller G, Fanter C, Loth F (1999) Structural changes in hemp fibers as a result of enzymatic hydrolysis with mixed enzyme systems. Text Res J 69:244–251CrossRef Buschle-Diller G, Fanter C, Loth F (1999) Structural changes in hemp fibers as a result of enzymatic hydrolysis with mixed enzyme systems. Text Res J 69:244–251CrossRef
13.
go back to reference Cherian BM, Leão AL, de Souza SF et al (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725CrossRef Cherian BM, Leão AL, de Souza SF et al (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725CrossRef
14.
go back to reference Cordeiro N, Gouveia C, John MJ (2011) Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography. Indust Crops Prod 33:108–115CrossRef Cordeiro N, Gouveia C, John MJ (2011) Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography. Indust Crops Prod 33:108–115CrossRef
15.
go back to reference DOA (2017) Fruit crops statistics 2017. Department of Agriculture Malaysia DOA (2017) Fruit crops statistics 2017. Department of Agriculture Malaysia
16.
go back to reference Das PK, Nag D, Debnath S et al (2010) Machinery for extraction and traditional spinning of plant fibres. Indian J Tradit Knowl 9(2):386–393 Das PK, Nag D, Debnath S et al (2010) Machinery for extraction and traditional spinning of plant fibres. Indian J Tradit Knowl 9(2):386–393
17.
go back to reference Debnath S (2016) Pineapple leaf fibre—a sustainable luxury and industrial textiles. In: Muthu S, Gardetti M (eds) Handbook of sustainable luxury textiles and fashion. Environmental footprints and eco-design of products and processes. Springer, Singapore Debnath S (2016) Pineapple leaf fibre—a sustainable luxury and industrial textiles. In: Muthu S, Gardetti M (eds) Handbook of sustainable luxury textiles and fashion. Environmental footprints and eco-design of products and processes. Springer, Singapore
18.
go back to reference Dey SK, Nag D, Das PK (2009) New dimensions of pineapple leaf fibre—an agrowaste for textile application. In: Shukla JP (ed) New technologies for rural development having potential of commercialisation. Allied Publishers Private Limited, Delhi, pp 115–127 Dey SK, Nag D, Das PK (2009) New dimensions of pineapple leaf fibre—an agrowaste for textile application. In: Shukla JP (ed) New technologies for rural development having potential of commercialisation. Allied Publishers Private Limited, Delhi, pp 115–127
19.
go back to reference Doraiswami I, Chellamani P (1993) Pineapple leaf fibres. Text Prog 24(1):1–37CrossRef Doraiswami I, Chellamani P (1993) Pineapple leaf fibres. Text Prog 24(1):1–37CrossRef
20.
go back to reference Dutta S, Bhattacharyya D (2013) Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananascomosus (pineapple) crown leaf. J Ethnopharmacol 150:451–457CrossRef Dutta S, Bhattacharyya D (2013) Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananascomosus (pineapple) crown leaf. J Ethnopharmacol 150:451–457CrossRef
21.
go back to reference Ghosh SK, Sinha MK (1977) Assessing textile values of pineapple fibre. Indian Text J 88(111–115):8 Ghosh SK, Sinha MK (1977) Assessing textile values of pineapple fibre. Indian Text J 88(111–115):8
22.
go back to reference Ghosh SK, Sinha MK, Dey SK et al (1982) Processing of pineapple leaf fibre (PALF) in cotton machinery. Text Trends 24:49–53 Ghosh SK, Sinha MK, Dey SK et al (1982) Processing of pineapple leaf fibre (PALF) in cotton machinery. Text Trends 24:49–53
23.
go back to reference Hansen CM, Björkman A (1998) The ultra-structure of wood from a solubility parameter point of view. Holzforschung 52:335–344CrossRef Hansen CM, Björkman A (1998) The ultra-structure of wood from a solubility parameter point of view. Holzforschung 52:335–344CrossRef
24.
go back to reference Hartzell MM, Hsieh YL (1998) Enzymatic scouring to improve cotton fabric wettability. Text Res J 68(4):233–241CrossRef Hartzell MM, Hsieh YL (1998) Enzymatic scouring to improve cotton fabric wettability. Text Res J 68(4):233–241CrossRef
25.
go back to reference John JM, Thomas S (2008) Biofibers and biocomposites. Carbohydr Polym 71:343–364CrossRef John JM, Thomas S (2008) Biofibers and biocomposites. Carbohydr Polym 71:343–364CrossRef
26.
go back to reference Jose S, Salim R, Ammayappa L (2016) An overview on production, properties, and value addition of pineapple leaf fibres (PALF). J Nat Fibres 13(3):362–373CrossRef Jose S, Salim R, Ammayappa L (2016) An overview on production, properties, and value addition of pineapple leaf fibres (PALF). J Nat Fibres 13(3):362–373CrossRef
27.
go back to reference Kengkhetkit N, Amornsakchai T (2012) Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Indust Crops Prod 40:55–61CrossRef Kengkhetkit N, Amornsakchai T (2012) Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Indust Crops Prod 40:55–61CrossRef
28.
go back to reference Leao AL, Souza SF, Cherian BM et al (2010) Pineapple leaf fibres for composites and cellulose. Mol Cryst Liq Crystals 522(1):36–41 Leao AL, Souza SF, Cherian BM et al (2010) Pineapple leaf fibres for composites and cellulose. Mol Cryst Liq Crystals 522(1):36–41
29.
go back to reference Leao AL, Cherian BM, Narine S et al (2015) The use of pineapple leaf fibres (PALSs) as reinforcement in composites. Biofibre Reinf Compos Mater 211–235 Leao AL, Cherian BM, Narine S et al (2015) The use of pineapple leaf fibres (PALSs) as reinforcement in composites. Biofibre Reinf Compos Mater 211–235
30.
go back to reference Li Y, Hardin ZR (1997) Enzymatic scouring of cotton: effects on structure and properties. Cellulose 94(88):96 Li Y, Hardin ZR (1997) Enzymatic scouring of cotton: effects on structure and properties. Cellulose 94(88):96
31.
go back to reference Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fibre for use in natural fibre-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRef Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fibre for use in natural fibre-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRef
32.
go back to reference Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRef Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRef
33.
go back to reference Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277(1):1–24CrossRef Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277(1):1–24CrossRef
34.
go back to reference Moya R, Berrocal A, Rodríguez-Zúñiga A et al (2016) Biopulp from pineapple leaf fiber produced by colonization with two white-rot fungi: Trametes versicolor and Pleurotus ostreatus. BioRes 11(4):8756–8776CrossRef Moya R, Berrocal A, Rodríguez-Zúñiga A et al (2016) Biopulp from pineapple leaf fiber produced by colonization with two white-rot fungi: Trametes versicolor and Pleurotus ostreatus. BioRes 11(4):8756–8776CrossRef
35.
go back to reference Munawar SS, Umemura K, Tanaka F et al (2008) Effects of alkali, mild steam, and chitosan treatments on the properties of pineapple, ramie, and sansevieria fiber bundles. J Wood Sci 54:28–35CrossRef Munawar SS, Umemura K, Tanaka F et al (2008) Effects of alkali, mild steam, and chitosan treatments on the properties of pineapple, ramie, and sansevieria fiber bundles. J Wood Sci 54:28–35CrossRef
36.
go back to reference Mwaikambo LY (2006) Review of the history, properties and application of plant fibres. African J Sci Technol Sci Eng Ser 7:120–133 Mwaikambo LY (2006) Review of the history, properties and application of plant fibres. African J Sci Technol Sci Eng Ser 7:120–133
37.
go back to reference Nayan NHM, Razak SIA, Rahman WAWA et al (2013) Effects of mercerization on the properties of paper produced from Malaysian pineapple leaf fiber. Inter J Eng Technol 13(4):1–6 Nayan NHM, Razak SIA, Rahman WAWA et al (2013) Effects of mercerization on the properties of paper produced from Malaysian pineapple leaf fiber. Inter J Eng Technol 13(4):1–6
38.
go back to reference Nayan NHM, Razak SIA, Rahman WAWA (2014) Biopulping by Ceriporiopsis subvermispora towards pineapple leaf fiber (PALF) paper properties. Adv Mater Res 1043:180183 Nayan NHM, Razak SIA, Rahman WAWA (2014) Biopulping by Ceriporiopsis subvermispora towards pineapple leaf fiber (PALF) paper properties. Adv Mater Res 1043:180183
39.
go back to reference Nikmatin S, Rudwiyanti JR, Prasetyo KW et al (2015) Mechanical and optical characterization of bio-nanocomposite from pineapple leaf fibre material for food packaging. In: International seminar on photonics, optics and its applications (ISPhOA2014), vol 9444, pp 1–6 Nikmatin S, Rudwiyanti JR, Prasetyo KW et al (2015) Mechanical and optical characterization of bio-nanocomposite from pineapple leaf fibre material for food packaging. In: International seminar on photonics, optics and its applications (ISPhOA2014), vol 9444, pp 1–6
40.
go back to reference Othman MH, Buang L, Mohd Khairuzamri MS (2011) Rejuvenating the Malaysia pineapple industry. Acta Horti 902 Othman MH, Buang L, Mohd Khairuzamri MS (2011) Rejuvenating the Malaysia pineapple industry. Acta Horti 902
41.
go back to reference Panagiotopoulos IA, Lignos GD, Bakker RR et al (2012) Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds. J Clean Prod 32:45–51CrossRef Panagiotopoulos IA, Lignos GD, Bakker RR et al (2012) Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds. J Clean Prod 32:45–51CrossRef
42.
go back to reference Pandey SN (2007) Ramie fibre: Part II. Physical fibre properties. A critical appreciation of recent developments. Text Prog 39:189–268CrossRef Pandey SN (2007) Ramie fibre: Part II. Physical fibre properties. A critical appreciation of recent developments. Text Prog 39:189–268CrossRef
43.
go back to reference Panyasart K, Chaiyut N, Amornsakchai T et al (2014) Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia 56:406–413CrossRef Panyasart K, Chaiyut N, Amornsakchai T et al (2014) Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia 56:406–413CrossRef
44.
go back to reference Paster M, Pellegrino JL, Carole TM (2003) Industrial bioproducts: today and tomorrow. Report prepared for the US Department of Energy, Washington, DC Paster M, Pellegrino JL, Carole TM (2003) Industrial bioproducts: today and tomorrow. Report prepared for the US Department of Energy, Washington, DC
45.
go back to reference Payae Y, Lopattananon N (2009) Adhesion of pineapple-leaf fiber to epoxy matrix: the role of surface treatments. Songklanakarin J Sci Technol 31:189–194 Payae Y, Lopattananon N (2009) Adhesion of pineapple-leaf fiber to epoxy matrix: the role of surface treatments. Songklanakarin J Sci Technol 31:189–194
46.
go back to reference Porzi GF, Prussi M, Chiaramonti D et al (2012) Modelling lignocellulosic bioethanol from poplar: estimation of the level of process integration, yield and potential for co-products. J Clean Prod 34:66–75CrossRef Porzi GF, Prussi M, Chiaramonti D et al (2012) Modelling lignocellulosic bioethanol from poplar: estimation of the level of process integration, yield and potential for co-products. J Clean Prod 34:66–75CrossRef
47.
go back to reference Rajesh Bapu TN, Kumaragurubaran SB, Venkataramanan R et al (2015) A review on effect of chemical treatment of natural fibres on mechanical properties. Inter J of Applied Engin Research 10(19):14703–14714 Rajesh Bapu TN, Kumaragurubaran SB, Venkataramanan R et al (2015) A review on effect of chemical treatment of natural fibres on mechanical properties. Inter J of Applied Engin Research 10(19):14703–14714
48.
go back to reference Ramli SNR, Fadzullah S, Mustafa Z (2016) Mechanical performance of pineapple leaf fiber reinforced poly lactic acid (PLA) biocomposites. Proc Mech Eng Res 131–132 Ramli SNR, Fadzullah S, Mustafa Z (2016) Mechanical performance of pineapple leaf fiber reinforced poly lactic acid (PLA) biocomposites. Proc Mech Eng Res 131–132
49.
go back to reference Rana S, Pichandi S, Parveen S et al (2014) Natural plant fibres: production, processing, properties and their sustainability parameters (Chap. 1). In: Roadmap to sustainable textiles and clothing. Textile science and clothing technology. Springer, Berlin, pp 1–35 Rana S, Pichandi S, Parveen S et al (2014) Natural plant fibres: production, processing, properties and their sustainability parameters (Chap. 1). In: Roadmap to sustainable textiles and clothing. Textile science and clothing technology. Springer, Berlin, pp 1–35
50.
go back to reference Rout J, Misra M, Tripathy SS et al (2001) The influence of fibre treatment on the performance of coir-polyester composites. Compos Sci Technol 61(9):1303–1310CrossRef Rout J, Misra M, Tripathy SS et al (2001) The influence of fibre treatment on the performance of coir-polyester composites. Compos Sci Technol 61(9):1303–1310CrossRef
51.
go back to reference Sarkar PB, Chatterjee H (1948) The bleaching of jute with chlorite. J Text Inst 39:74–81 Sarkar PB, Chatterjee H (1948) The bleaching of jute with chlorite. J Text Inst 39:74–81
52.
go back to reference Sedelnik N (2004) Properties of hemp fibre cottonised by biological modification of hemp hackling noils. Fibres Text East Eur 12(1):58–60 Sedelnik N (2004) Properties of hemp fibre cottonised by biological modification of hemp hackling noils. Fibres Text East Eur 12(1):58–60
53.
go back to reference Siakeng R, Jawaid M, Ariffin H et al (2018) Physical properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites. IOP Conf Ser Mater Sci Eng 290:012031CrossRef Siakeng R, Jawaid M, Ariffin H et al (2018) Physical properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites. IOP Conf Ser Mater Sci Eng 290:012031CrossRef
54.
go back to reference Sibaly S, Jeetah P (2017) Production of paper from pineapple leaves. J Environ Chem Eng 5:5978–5986CrossRef Sibaly S, Jeetah P (2017) Production of paper from pineapple leaves. J Environ Chem Eng 5:5978–5986CrossRef
55.
go back to reference Singhal A, Jaiswal PK, Thakur IS (2015) Biopulping of bagasse by Cryptococcus albidus under partially sterilized conditions. Inter Biodeter Biodegrad 97:143–150CrossRef Singhal A, Jaiswal PK, Thakur IS (2015) Biopulping of bagasse by Cryptococcus albidus under partially sterilized conditions. Inter Biodeter Biodegrad 97:143–150CrossRef
56.
go back to reference Sricharussin W, Ree-iam P, Phanomchoeng W et al (2009) Effect of enzymatic treatment on the dyeing of pineapple leaf fibres with natural dyes. Sci Asia 35(1):31–36CrossRef Sricharussin W, Ree-iam P, Phanomchoeng W et al (2009) Effect of enzymatic treatment on the dyeing of pineapple leaf fibres with natural dyes. Sci Asia 35(1):31–36CrossRef
57.
go back to reference Threepopnatkul P, Teppinta W, Sombatsompop N (2011) Effect of co-monomer ratio in ABS and wood content on processing and properties in wood/ABS composites. Fibers Polym 12:1007–1013CrossRef Threepopnatkul P, Teppinta W, Sombatsompop N (2011) Effect of co-monomer ratio in ABS and wood content on processing and properties in wood/ABS composites. Fibers Polym 12:1007–1013CrossRef
58.
go back to reference Threepopnatkul P, Krachang T, Teerawattanan W et al (2012) Study of surface treatment of pineapple leaf fiber (PALF) on performance of PALF/ABS composites. In: 15th European conference on composite materials, Venice, Italy, pp 1–7 Threepopnatkul P, Krachang T, Teerawattanan W et al (2012) Study of surface treatment of pineapple leaf fiber (PALF) on performance of PALF/ABS composites. In: 15th European conference on composite materials, Venice, Italy, pp 1–7
59.
go back to reference Yang Y, Sharma-Shivappa R, Burns JC, Cheng JJ (2009) Dilute acid pretreatment of oven-dried switchgrass germplasms for bioethanol production. Energy Fuels 23:3759–3766CrossRef Yang Y, Sharma-Shivappa R, Burns JC, Cheng JJ (2009) Dilute acid pretreatment of oven-dried switchgrass germplasms for bioethanol production. Energy Fuels 23:3759–3766CrossRef
60.
go back to reference Yusof Y, Ahmad MR, Wahab MS et al (2012) Producing paper using pineapple leaf fiber. Adv Mater Res 383:3382–3386 Yusof Y, Ahmad MR, Wahab MS et al (2012) Producing paper using pineapple leaf fiber. Adv Mater Res 383:3382–3386
61.
go back to reference Zahari MAKM, Abdullah SSS, Roslan AM et al (2014) Efficient utilization of oil palm frond for bio-based products and biorefinery. J Clean Prod 65:252–260CrossRef Zahari MAKM, Abdullah SSS, Roslan AM et al (2014) Efficient utilization of oil palm frond for bio-based products and biorefinery. J Clean Prod 65:252–260CrossRef
62.
go back to reference Zin MH, Abdan K, Mazlan N et al (2018) The effect of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. IOP Conf Ser: Mater Sci and Engin 368:012035 Zin MH, Abdan K, Mazlan N et al (2018) The effect of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. IOP Conf Ser: Mater Sci and Engin 368:012035
63.
go back to reference Zwane PE, Masarirambi MT, Thwala JM et al (2014) Enzymatic processing of plant fibres for diversified uses. In: RUFORUM fourth biennial conference, Maputo, Mozambique, 19–25 July 2014, pp 391–392 Zwane PE, Masarirambi MT, Thwala JM et al (2014) Enzymatic processing of plant fibres for diversified uses. In: RUFORUM fourth biennial conference, Maputo, Mozambique, 19–25 July 2014, pp 391–392
Metadata
Title
Chemical, Physical and Biological Treatments of Pineapple Leaf Fibres
Authors
F. N. M. Padzil
Z. M. A. Ainun
Naziratulasikin Abu Kassim
S. H. Lee
C. H. Lee
Hidayah Ariffin
Edi Syams Zainudin
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1416-6_5

Premium Partners