Skip to main content
Top
Published in: Neural Computing and Applications 14/2022

21-01-2021 | S.I. : Healthcare Analytics

CircNet: an encoder–decoder-based convolution neural network (CNN) for circular RNA identification

Authors: Marco Stricker, Muhammad Nabeel Asim, Andreas Dengel, Sheraz Ahmed

Published in: Neural Computing and Applications | Issue 14/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Discrimination of circular RNA from long non-coding RNA is important to understand its role in different biological processes, disease prediction and cure. Identifying circular RNA through manual laboratories work is expensive, time-consuming and prone to errors. Development of computational methodologies for identification of circular RNA is an active area of research. State-of-the-art circular RNA identification methodologies make use of handcrafted features, which not only increase the feature space, but also extract irrelevant and redundant features. The paper in hand proposes an end-to-end deep learning-based framework named as CircNet, which does not require any handcrafted features. It takes raw RNA sequence as an input and utilises encoder–decoder based convolutional operations to learn lower-dimensional latent representation. This latent representation is further passed to another convolutional architecture to extract discriminative features followed by a classification layer. We performed extensive experimentation to highlight different regions of genome sequence that preserve the most important information for identifying circular RNAs. CircNet significantly outperforms state-of-the-art approaches with a considerable margin 10.29% in terms F1 measure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(suppl-1):R17–R29CrossRef Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(suppl-1):R17–R29CrossRef
2.
go back to reference Holdt LM, Kohlmaier A, Teupser D (2018) Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci 75(6):1071–1098CrossRef Holdt LM, Kohlmaier A, Teupser D (2018) Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci 75(6):1071–1098CrossRef
3.
4.
go back to reference Yao D, Zhang L, Zheng M, Sun X, Yan L, Liu P (2018) Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease. Sci Rep 8(1):1–6 Yao D, Zhang L, Zheng M, Sun X, Yan L, Liu P (2018) Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease. Sci Rep 8(1):1–6
5.
go back to reference Razzak MI, Imran M, Xu G (2020) Big data analytics for preventive medicine. Neural Comput Appl 32(9):4417–4451CrossRef Razzak MI, Imran M, Xu G (2020) Big data analytics for preventive medicine. Neural Comput Appl 32(9):4417–4451CrossRef
6.
go back to reference Rehman A, Naz S, Razzak I (2020) Leveraging big data analytics in healthcare enhancement: trends, challenges and opportunities. arXiv preprint arXiv:2004.09010 Rehman A, Naz S, Razzak I (2020) Leveraging big data analytics in healthcare enhancement: trends, challenges and opportunities. arXiv preprint arXiv:​2004.​09010
7.
go back to reference Amin N, McGrath A, Chen Y-PP (2019) Evaluation of deep learning in non-coding RNA classification. Nat Mach Intell 1(5):246–256CrossRef Amin N, McGrath A, Chen Y-PP (2019) Evaluation of deep learning in non-coding RNA classification. Nat Mach Intell 1(5):246–256CrossRef
8.
go back to reference Pan X, Xiong K (2015) PredcircRNA: computational classification of circular RNA from other long non-coding RNA using hybrid features. Mol BioSyst 11(8):2219–2226CrossRef Pan X, Xiong K (2015) PredcircRNA: computational classification of circular RNA from other long non-coding RNA using hybrid features. Mol BioSyst 11(8):2219–2226CrossRef
9.
go back to reference Wang Z, Lei X, Fang-Xiang W (2019) Identifying cancer-specific circRNA-RBP binding sites based on deep learning. Molecules 24(22):4035CrossRef Wang Z, Lei X, Fang-Xiang W (2019) Identifying cancer-specific circRNA-RBP binding sites based on deep learning. Molecules 24(22):4035CrossRef
10.
go back to reference Lee ECS, Elhassan SAM, Lim GPL, Kok WH, Tan SW, Leong EN, Tan SH, Chan EWL, Bhattamisra SK, Rajendran R et al (2019) The roles of circular RNAs in human development and diseases. Biomed Pharmacother 111:198–208CrossRef Lee ECS, Elhassan SAM, Lim GPL, Kok WH, Tan SW, Leong EN, Tan SH, Chan EWL, Bhattamisra SK, Rajendran R et al (2019) The roles of circular RNAs in human development and diseases. Biomed Pharmacother 111:198–208CrossRef
11.
go back to reference Chaabane M, Williams RM, Stephens AT, Park JW (2020) circdeep: deep learning approach for circular RNA classification from other long non-coding RNA. Bioinformatics 36(1):73–80CrossRef Chaabane M, Williams RM, Stephens AT, Park JW (2020) circdeep: deep learning approach for circular RNA classification from other long non-coding RNA. Bioinformatics 36(1):73–80CrossRef
12.
go back to reference Huang S, Yang B, Chen BJ, Bliim N, Ueberham U, Arendt T, Janitz M (2017) The emerging role of circular RNAs in transcriptome regulation. Genomics 109(5–6):401–407CrossRef Huang S, Yang B, Chen BJ, Bliim N, Ueberham U, Arendt T, Janitz M (2017) The emerging role of circular RNAs in transcriptome regulation. Genomics 109(5–6):401–407CrossRef
13.
go back to reference Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S, Curado J, Snyder M, Gingeras TR, Guigó R (2012) Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 22(9):1616–1625CrossRef Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S, Curado J, Snyder M, Gingeras TR, Guigó R (2012) Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 22(9):1616–1625CrossRef
14.
go back to reference Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413CrossRef Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413CrossRef
15.
go back to reference Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–1842CrossRef Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–1842CrossRef
16.
go back to reference Zhang Z, Yang T, Xiao J (2018) Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34:267–274CrossRef Zhang Z, Yang T, Xiao J (2018) Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34:267–274CrossRef
17.
go back to reference Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D (2015) Correlation of circular RNA abundance with proliferation—exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis and normal human tissues. Sci Rep 5(1):1–10CrossRef Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D (2015) Correlation of circular RNA abundance with proliferation—exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis and normal human tissues. Sci Rep 5(1):1–10CrossRef
18.
go back to reference Fiannaca A, La Rosa M, La Paglia L, Rizzo R, Urso A (2017) nRC: non-coding RNA classifier based on structural features. BioData Min 10(1):27CrossRef Fiannaca A, La Rosa M, La Paglia L, Rizzo R, Urso A (2017) nRC: non-coding RNA classifier based on structural features. BioData Min 10(1):27CrossRef
19.
go back to reference Zhang X, Wang J, Li J, Chen W, Liu C (2018) CRlncRC: a machine learning-based method for cancer-related long noncoding RNA identification using integrated features. BMC Med Genomics 11(6):99–112CrossRef Zhang X, Wang J, Li J, Chen W, Liu C (2018) CRlncRC: a machine learning-based method for cancer-related long noncoding RNA identification using integrated features. BMC Med Genomics 11(6):99–112CrossRef
20.
go back to reference Holdt LM, Kohlmaier A, Teupser D (2018) Circular RNAs as therapeutic agents and targets. Front Physiol 9:1262CrossRef Holdt LM, Kohlmaier A, Teupser D (2018) Circular RNAs as therapeutic agents and targets. Front Physiol 9:1262CrossRef
21.
go back to reference Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136CrossRef Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136CrossRef
22.
go back to reference Zaghlool A, Ameur A, Wu C, Westholm JO, Niazi A, Manivannan M, Bramlett K, Nilsson M, Feuk L (2018) Expression profiling and in situ screening of circular RNAs in human tissues. Sci Rep 8(1):1–12CrossRef Zaghlool A, Ameur A, Wu C, Westholm JO, Niazi A, Manivannan M, Bramlett K, Nilsson M, Feuk L (2018) Expression profiling and in situ screening of circular RNAs in human tissues. Sci Rep 8(1):1–12CrossRef
23.
go back to reference Zirkel A, Papantonis A (2018) Detecting circular RNAs by RNA fluorescence in situ hybridization. In: Circular RNAs. Springer, pp 69–75 Zirkel A, Papantonis A (2018) Detecting circular RNAs by RNA fluorescence in situ hybridization. In: Circular RNAs. Springer, pp 69–75
24.
go back to reference Xia S, Feng J, Lei L, Jun H, Xia L, Jun Wang Yu, Xiang LL, Zhong S, Han L et al (2017) Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Briefings Bioinform 18(6):984–992 Xia S, Feng J, Lei L, Jun H, Xia L, Jun Wang Yu, Xiang LL, Zhong S, Han L et al (2017) Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Briefings Bioinform 18(6):984–992
25.
go back to reference Chen L, Zhang Y-H, Huang G, Pan X, Wang SP, Huang T, Cai Y-D (2018) Discriminating cirRNAs from other lncRNAs using a hierarchical extreme learning machine (H-ELM) algorithm with feature selection. Mol Genet Genomics 293(1):137–149CrossRef Chen L, Zhang Y-H, Huang G, Pan X, Wang SP, Huang T, Cai Y-D (2018) Discriminating cirRNAs from other lncRNAs using a hierarchical extreme learning machine (H-ELM) algorithm with feature selection. Mol Genet Genomics 293(1):137–149CrossRef
26.
go back to reference Angermueller C, Lee HJ, Reik W, Stegle O (2017) DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol 18(1):67CrossRef Angermueller C, Lee HJ, Reik W, Stegle O (2017) DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol 18(1):67CrossRef
27.
go back to reference Wang Y, Liu T, Dong X, Shi H, Zhang C, Mo Y-Y, Wang Z (2016) Predicting DNA methylation state of CPG dinucleotide using genome topological features and deep networks. Sci Rep 6:19598CrossRef Wang Y, Liu T, Dong X, Shi H, Zhang C, Mo Y-Y, Wang Z (2016) Predicting DNA methylation state of CPG dinucleotide using genome topological features and deep networks. Sci Rep 6:19598CrossRef
28.
go back to reference Di Gangi M, Bosco GL, Rizzo R (2018) Deep learning architectures for prediction of nucleosome positioning from sequences data. BMC Bioinform 19(14):418CrossRef Di Gangi M, Bosco GL, Rizzo R (2018) Deep learning architectures for prediction of nucleosome positioning from sequences data. BMC Bioinform 19(14):418CrossRef
29.
go back to reference Tian K, Shao M, Wang Y, Guan J, Zhou S (2016) Boosting compound-protein interaction prediction by deep learning. Methods 110:64–72CrossRef Tian K, Shao M, Wang Y, Guan J, Zhou S (2016) Boosting compound-protein interaction prediction by deep learning. Methods 110:64–72CrossRef
30.
go back to reference Kwon S, Yoon S (2017) Deepcci: end-to-end deep learning for chemical–chemical interaction prediction. In: Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics, pp 203–212 Kwon S, Yoon S (2017) Deepcci: end-to-end deep learning for chemical–chemical interaction prediction. In: Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics, pp 203–212
31.
go back to reference Singh R, Lanchantin J, Robins G, Qi Y (2016) Deepchrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics 32(17):i639–i648CrossRef Singh R, Lanchantin J, Robins G, Qi Y (2016) Deepchrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics 32(17):i639–i648CrossRef
32.
go back to reference Zhou J, Troyanskaya OG (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 12(10):931–934CrossRef Zhou J, Troyanskaya OG (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 12(10):931–934CrossRef
33.
go back to reference Asima MN, Malik MI, Dengela A, Ahmed S (2019) A robust and precise convnet for small non-coding RNA classification (RPC-SNRC). arXiv preprint arXiv:1912.11356 Asima MN, Malik MI, Dengela A, Ahmed S (2019) A robust and precise convnet for small non-coding RNA classification (RPC-SNRC). arXiv preprint arXiv:​1912.​11356
34.
go back to reference Cho K, Van Merriënboer B, Bahdanau D, Bengio Y (2014) On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259 Cho K, Van Merriënboer B, Bahdanau D, Bengio Y (2014) On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:​1409.​1259
35.
go back to reference Yasrab R, Naijie G, Zhang X (2017) An encoder-decoder based convolution neural network (CNN) for future advanced driver assistance system (ADAS). Appl Sci 7(4):312CrossRef Yasrab R, Naijie G, Zhang X (2017) An encoder-decoder based convolution neural network (CNN) for future advanced driver assistance system (ADAS). Appl Sci 7(4):312CrossRef
36.
go back to reference Chen X, Han P, Zhou T, Guo X, Song X, Li Y (2016) circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep 6(1):1–6CrossRef Chen X, Han P, Zhou T, Guo X, Song X, Li Y (2016) circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep 6(1):1–6CrossRef
37.
go back to reference Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J et al (2019) Gencode reference annotation for the human and mouse genomes. Nucleic Acids Res 47(D1):D766–D773CrossRef Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J et al (2019) Gencode reference annotation for the human and mouse genomes. Nucleic Acids Res 47(D1):D766–D773CrossRef
38.
go back to reference Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006CrossRef Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006CrossRef
39.
go back to reference Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177CrossRef Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177CrossRef
40.
go back to reference Wang J, Wang L (2019) Deep learning of the back-splicing code for circular RNA formation. Bioinformatics 35(24):5235–5242CrossRef Wang J, Wang L (2019) Deep learning of the back-splicing code for circular RNA formation. Bioinformatics 35(24):5235–5242CrossRef
41.
go back to reference Straube S, Krell MM (2014) How to evaluate an agent’s behavior to infrequent events? Reliable performance estimation insensitive to class distribution. Front Comput Neurosci 8:43CrossRef Straube S, Krell MM (2014) How to evaluate an agent’s behavior to infrequent events? Reliable performance estimation insensitive to class distribution. Front Comput Neurosci 8:43CrossRef
42.
go back to reference Brzezinski D, Stefanowski J (2017) Prequential AUC: properties of the area under the ROC curve for data streams with concept drift. Knowl Inf Syst 52(2):531–562CrossRef Brzezinski D, Stefanowski J (2017) Prequential AUC: properties of the area under the ROC curve for data streams with concept drift. Knowl Inf Syst 52(2):531–562CrossRef
43.
go back to reference Zhang K, Pan X, Yang Y, Shen H-B (2019) CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks. RNA 25(12):1604–1615CrossRef Zhang K, Pan X, Yang Y, Shen H-B (2019) CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks. RNA 25(12):1604–1615CrossRef
45.
go back to reference Javad Z, Omid Y, Morteza M-N, Reza E, Ali M-N (2013) PPievo: protein–protein interaction prediction from PSSM based evolutionary information. Genomics 102(4):237–242CrossRef Javad Z, Omid Y, Morteza M-N, Reza E, Ali M-N (2013) PPievo: protein–protein interaction prediction from PSSM based evolutionary information. Genomics 102(4):237–242CrossRef
46.
go back to reference Halder AK, Dutta P, Kundu M, Basu S, Nasipuri M (2018) Review of computational methods for virus–host protein interaction prediction: a case study on novel ebola–human interactions. Briefings Funct Genomics 17(6):381–391 Halder AK, Dutta P, Kundu M, Basu S, Nasipuri M (2018) Review of computational methods for virus–host protein interaction prediction: a case study on novel ebola–human interactions. Briefings Funct Genomics 17(6):381–391
Metadata
Title
CircNet: an encoder–decoder-based convolution neural network (CNN) for circular RNA identification
Authors
Marco Stricker
Muhammad Nabeel Asim
Andreas Dengel
Sheraz Ahmed
Publication date
21-01-2021
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 14/2022
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05673-1

Other articles of this Issue 14/2022

Neural Computing and Applications 14/2022 Go to the issue

Premium Partner