Skip to main content
Top

2015 | OriginalPaper | Chapter

Classification of Heart Disorders Based on Tunable-Q Wavelet Transform of Cardiac Sound Signals

Authors : Shivnarayan Patidar, Ram Bilas Pachori

Published in: Chaos Modeling and Control Systems Design

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanical action of the heart generates sounds which can provide diagnostic information about the functioning of the cardiovascular system. Cardiac auscultation is an important means to diagnose heart disorders by listening to the heart sounds using conventional stethoscope. The traditional cardiac auscultation techniques require sophisticated interpretive skills in diagnosis and it requires long time to expertise. The heart sounds often last for a short period of time and pathological splitting of the heart sound is difficult to discern using traditional auscultation because human ears lack desired sensitivity towards heart sounds and murmurs. Therefore, the automatic heart sound analysis using advanced signal processing techniques based on digital acquisition of these sounds can play an important role. The heart sounds can be captured and processed in the form of cardiac sound signals by placing an electronic stethoscope at the appropriate location on the subject’s chest. The cardiac sound signals can be used to extract valuable diagnostic features for detection and identification of the heart valve and other disorders. In this book chapter, a new method for segmentation and classification of cardiac sound signals using tunable-Q wavelet transform (TQWT) has been proposed. The proposed method uses constrained TQWT based segmentation of cardiac sound signals into heart beat cycles. The features obtained from heart beat cycles of separately reconstructed heart sounds and murmur can better represent the various types of cardiac sound signals than that of containing both. Even the parameters evolved during constrained TQWT based separation of heart sounds and murmur can serve as valuable diagnostic features. Therefore, various entropy measures namely time-domain based Shannon entropy, frequency-domain based spectral entropy, and non-linear method based approximate entropy and Lempel-Ziv complexity have been computed for each segmented heart beat cycles. Two features have been created by the parameters that have been optimized while constrained TQWT namely the redundancy and the number of levels of decomposition. These ten features form the final feature set for subsequent classification of cardiac sound signals using artificial neural network (ANN) based technique. In this study, the following classes of cardiac sound signals have been used: normal, aortic stenosis, aortic regurgitation, splitting of S2, mitral regurgitation and mitral stenosis. The performance of the proposed method has been validated with publicly available datasets. The proposed method has provided significant performance in segmentation and classification of cardiac sound signals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Amit, G., Lessick, J.,Gavriely, N.,, Intrator, N.: Acoustic indices of cardiac functionality. In: International Coriference on Bio-inspired Systems and Signal Processing (BIOSIGNALS), pp. 77–83. Setubal, Portugal (2008) Amit, G.,  Lessick, J.,​Gavriely, N.,, Intrator, N.: Acoustic indices of cardiac functionality. In: International Coriference on Bio-inspired Systems and Signal Processing (BIOSIGNALS), pp. 77–83. Setubal, Portugal (2008)
2.
go back to reference Amit, G., Gavriely, N., Intrator, N.: Cluster analysis and classification of heart sounds. Biomed. Sig. Process Cont. 4(1), 26–36 (2009)CrossRef Amit, G., Gavriely, N., Intrator, N.: Cluster analysis and classification of heart sounds. Biomed. Sig. Process Cont. 4(1), 26–36 (2009)CrossRef
3.
go back to reference Ari, S., Saha, G.: On a robust algorithm for heart sound segmentation. J. Mech. Med. Biol. 7, 129–150 (2007)CrossRef Ari, S., Saha, G.: On a robust algorithm for heart sound segmentation. J. Mech. Med. Biol. 7, 129–150 (2007)CrossRef
4.
go back to reference Ari, S., Saha, G.: Classification of heart sounds using empirical mode decomposition based features. Int. J. Med. Eng. Inform. 1(1), 91–108 (2008)CrossRef Ari, S., Saha, G.: Classification of heart sounds using empirical mode decomposition based features. Int. J. Med. Eng. Inform. 1(1), 91–108 (2008)CrossRef
5.
go back to reference Ari, S., Saha, G.: In search of an optimization technique for artificial neural network to classify abnormal heart sounds. Appl. Soft. Comput. 9(1), 330–340 (2009)CrossRef Ari, S., Saha, G.: In search of an optimization technique for artificial neural network to classify abnormal heart sounds. Appl. Soft. Comput. 9(1), 330–340 (2009)CrossRef
6.
go back to reference Ari, S., Sensharma, K., Saha, G.: DSP implementation of heart valve disorder detection system from a phonocardiogram signal. J. Med. Eng. Technol. 32(2), 122–132 (2008)CrossRef Ari, S., Sensharma, K., Saha, G.: DSP implementation of heart valve disorder detection system from a phonocardiogram signal. J. Med. Eng. Technol. 32(2), 122–132 (2008)CrossRef
7.
go back to reference Ari, S., Hembram, K., Saha, G.: Detection of cardiac abnormality from PCG signal using LMS based least square SVM cassifier. Expert Syst. Appl. 37, 8019–8026 (2010)CrossRef Ari, S., Hembram, K., Saha, G.: Detection of cardiac abnormality from PCG signal using LMS based least square SVM cassifier. Expert Syst. Appl. 37, 8019–8026 (2010)CrossRef
8.
go back to reference Barschdorff, D., Femmer, U., and Trowitzsch, E.: Automatic phonocardiogram signal analysis in infants based on wavelet transforms and artificial neural networks. In: Computers in Cardiology, pp. 753–756. Vienna, Austria (1995) Barschdorff, D., Femmer, U., and Trowitzsch, E.: Automatic phonocardiogram signal analysis in infants based on wavelet transforms and artificial neural networks. In: Computers in Cardiology, pp. 753–756. Vienna, Austria (1995)
9.
go back to reference Cathers, I.: Neural network assisted cardiac auscultation. Art. Intell. Med. 7, 53–66 (1995)CrossRef Cathers, I.: Neural network assisted cardiac auscultation. Art. Intell. Med. 7, 53–66 (1995)CrossRef
10.
go back to reference Chauhan, S., Wang, P., Lim, C.S., Anantharaman, V.: A computer-aided MFCC-based HMM system for automatic auscultation. Comput. Biol. Med. 38(2), 221–233 (2008)CrossRef Chauhan, S., Wang, P., Lim, C.S., Anantharaman, V.: A computer-aided MFCC-based HMM system for automatic auscultation. Comput. Biol. Med. 38(2), 221–233 (2008)CrossRef
11.
go back to reference Choi, S.: Detection of valvular heart disorders using wavelet packet decomposition and support vector machine. Expert Syst. Appl. 35(4), 1679–1687 (2008)CrossRef Choi, S.: Detection of valvular heart disorders using wavelet packet decomposition and support vector machine. Expert Syst. Appl. 35(4), 1679–1687 (2008)CrossRef
12.
go back to reference Choi, S., Jiang, Z.: Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Syst. Appl. 34(2), 1056–1069 (2008)CrossRef Choi, S., Jiang, Z.: Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Syst. Appl. 34(2), 1056–1069 (2008)CrossRef
13.
go back to reference Choi, S., Jiang, Z.: Cardiac sound murmurs classification with autoregressive spectral analysis and multi-support vector machine technique. Comput. Biol. Med. 40(1), 8–20 (2010)CrossRef Choi, S., Jiang, Z.: Cardiac sound murmurs classification with autoregressive spectral analysis and multi-support vector machine technique. Comput. Biol. Med. 40(1), 8–20 (2010)CrossRef
14.
go back to reference Chung, Y.J. (2008). Using Kullback-Leibler distance in determining the classes for the heart sound signal classification. In: Intelligent Data Engineering and Automated Learning, pp. 49–56. Springer Heidelberg Berlin (2008) Chung, Y.J. (2008). Using Kullback-Leibler distance in determining the classes for the heart sound signal classification. In: Intelligent Data Engineering and Automated Learning, pp. 49–56. Springer Heidelberg Berlin (2008)
15.
go back to reference Chung, Y.J.: Classification of continuous heart sound signals using the ergodic hidden Markov model. In: Pattern Recognition and Image Analysis, pp. 563–570. Springer Heidelberg Berlin (2007) Chung, Y.J.: Classification of continuous heart sound signals using the ergodic hidden Markov model. In: Pattern Recognition and Image Analysis, pp. 563–570. Springer Heidelberg Berlin (2007)
16.
go back to reference Dokur, Z., Ölmez, T.: Feature determination for heart sounds based on divergence analysis. Digit. Signal Proc. 19(3), 521–531 (2009)CrossRef Dokur, Z., Ölmez, T.: Feature determination for heart sounds based on divergence analysis. Digit. Signal Proc. 19(3), 521–531 (2009)CrossRef
17.
go back to reference Dokur, Z., Ölmez, T.: Heart sound classification using wavelet transform and incremental self-organizing map. Digit. Signal Proc. 18(6), 951–959 (2008)CrossRef Dokur, Z., Ölmez, T.: Heart sound classification using wavelet transform and incremental self-organizing map. Digit. Signal Proc. 18(6), 951–959 (2008)CrossRef
18.
go back to reference Durand, L.G., Pibarot, P.: Digital signal processing of the phonocardiogram: review of the most recent advancements. Crit. Rev. Biomed. Eng. 23, 163–219 (1995)CrossRef Durand, L.G., Pibarot, P.: Digital signal processing of the phonocardiogram: review of the most recent advancements. Crit. Rev. Biomed. Eng. 23, 163–219 (1995)CrossRef
19.
go back to reference Feigen, L.P.: Physical characteristics of sound and hearing. Am. J. Cardiol. 28, 130–133 (1971)CrossRef Feigen, L.P.: Physical characteristics of sound and hearing. Am. J. Cardiol. 28, 130–133 (1971)CrossRef
20.
go back to reference Gamero, L.G., Watrous, R.: Detection of the first and second heart sound using probabilistic models. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2877–2880 (2003) Gamero, L.G., Watrous, R.: Detection of the first and second heart sound using probabilistic models. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2877–2880 (2003)
21.
go back to reference Groch, M.W., Domnanovich, J.R., Erwin, W.D.: A new heart-sounds gating device for medical imaging. IEEE Trans. Biomed. Eng. 39(3), 307–310 (1992)CrossRef Groch, M.W., Domnanovich, J.R., Erwin, W.D.: A new heart-sounds gating device for medical imaging. IEEE Trans. Biomed. Eng. 39(3), 307–310 (1992)CrossRef
22.
go back to reference Gupta, C.N., Palaniappan, R., Swaminathan, S., Krishnan, S.M.: Neural network classification of homomorphic segmented heart sounds. Appl. Soft Comput. 7(1), 286–297 (2007)CrossRef Gupta, C.N., Palaniappan, R., Swaminathan, S., Krishnan, S.M.: Neural network classification of homomorphic segmented heart sounds. Appl. Soft Comput. 7(1), 286–297 (2007)CrossRef
23.
go back to reference Hadi, H.M., Mashor, M.Y., Suboh, M.Z., and Mohamed, M.S.: Classification of heart sound based on S-transform and neural networks. In: Proceedings of International Conference on Information Sciences Signal Processing and their Applications, pp. 189–192. Kuala Lumpur, Malaysia (2010) Hadi, H.M., Mashor, M.Y., Suboh, M.Z., and Mohamed, M.S.: Classification of heart sound based on S-transform and neural networks. In: Proceedings of International Conference on Information Sciences Signal Processing and their Applications, pp. 189–192. Kuala Lumpur, Malaysia (2010)
24.
go back to reference Haghighi-Mood, A., Torry, J.N.: A sub-band energy tracking algorithm for heart sound segmentation. In: Computers in Cardiology, pp. 501–504 (1995) Haghighi-Mood, A., Torry, J.N.: A sub-band energy tracking algorithm for heart sound segmentation. In: Computers in Cardiology, pp. 501–504 (1995)
25.
go back to reference Hanna, I.R., Silverman, M.E.: A history of cardiac auscultation and some of its contributors. Am. J. Cardiol. 90, 259–267 (2002)CrossRef Hanna, I.R., Silverman, M.E.: A history of cardiac auscultation and some of its contributors. Am. J. Cardiol. 90, 259–267 (2002)CrossRef
26.
go back to reference Huiying, L., Sakari, L., liro, H.: A heart sound segmentation algorithm using wavelet decomposition and reconstruction. In: Proceedings of 19th International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1630–1633. Chicago, IL (1997) Huiying, L., Sakari, L., liro, H.: A heart sound segmentation algorithm using wavelet decomposition and reconstruction. In: Proceedings of 19th International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1630–1633. Chicago, IL (1997)
27.
go back to reference Iwata, A., Ishii, A.N., Suzumura, N., Ikegaya, K.: Algorithm for detecting the first and the second heart sounds by spectral tracking. Med. Biol. Eng. Comput. 18, 19–26 (1980)CrossRef Iwata, A., Ishii, A.N., Suzumura, N., Ikegaya, K.: Algorithm for detecting the first and the second heart sounds by spectral tracking. Med. Biol. Eng. Comput. 18, 19–26 (1980)CrossRef
28.
go back to reference Jiang, Z., Choi, S.: A cardiac sound characteristic waveform method for in-home heart disorder monitoring with electric stethoscope. Expert Syst. Appl. 31(2), 286–298 (2006)CrossRef Jiang, Z., Choi, S.: A cardiac sound characteristic waveform method for in-home heart disorder monitoring with electric stethoscope. Expert Syst. Appl. 31(2), 286–298 (2006)CrossRef
29.
go back to reference Kannathal, N., Choo, M.L., Acharya, U.R., Sadasivan, P.K.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80, 187–194 (2005) Kannathal, N., Choo, M.L., Acharya, U.R., Sadasivan, P.K.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80, 187–194 (2005)
30.
go back to reference Kao, W.C., Wei, C.C.: Automatic phonocardiograph signal analysis for detecting heart valve disorders. Expert Syst. Appl. 38(6), 6458–6468 (2011)CrossRef Kao, W.C., Wei, C.C.: Automatic phonocardiograph signal analysis for detecting heart valve disorders. Expert Syst. Appl. 38(6), 6458–6468 (2011)CrossRef
31.
go back to reference Kumar, D., Carvalho, P., Antunes, M., Henriques, J., Eugenio, L., Schmidt, R., Habetha, J.: Detection of S1 and S2 heart sounds by high frequency signatures. In: Procedings of 28th IEEE Engineering in Medicine and Biology Society Annual International Conference, pp. 1410–1416. New York , USA (2006) Kumar, D., Carvalho, P., Antunes, M., Henriques, J., Eugenio, L., Schmidt, R., Habetha, J.: Detection of S1 and S2 heart sounds by high frequency signatures. In: Procedings of 28th IEEE Engineering in Medicine and Biology Society Annual International Conference, pp. 1410–1416. New York , USA (2006)
32.
go back to reference Kumar, D., Carvalho, P., Antunes, M., Henriques, J., SaeMelo, A., Schmidt, R., and Habetha, J.: Third heart sound detection using wavelet transform-simplicity filter. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1277–1281. Lyon, France (2007) Kumar, D., Carvalho, P., Antunes, M., Henriques, J., SaeMelo, A., Schmidt, R., and Habetha, J.: Third heart sound detection using wavelet transform-simplicity filter. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1277–1281. Lyon, France (2007)
33.
go back to reference Lehner, R.J., Rangayyan, R.M.: A three-channel microcomputer system for segmentation and characterization of the phonocardiogram. IEEE Trans. Biomed. Eng. 34(6), 485–489 (1987)CrossRef Lehner, R.J., Rangayyan, R.M.: A three-channel microcomputer system for segmentation and characterization of the phonocardiogram. IEEE Trans. Biomed. Eng. 34(6), 485–489 (1987)CrossRef
35.
go back to reference Liang, H., Lukkarinen, S., Hartimo, I.: Heart sound segmentation algorithm based on heart sound envelogram. In: Computers in Cardiology, pp. 105–108 (1997) Liang, H., Lukkarinen, S., Hartimo, I.: Heart sound segmentation algorithm based on heart sound envelogram. In: Computers in Cardiology, pp. 105–108 (1997)
36.
go back to reference Lippmann, R.P.: An introduction to computing with neural nets. IEEE ASSP Mag. 4(2), 4–22 (1987)CrossRef Lippmann, R.P.: An introduction to computing with neural nets. IEEE ASSP Mag. 4(2), 4–22 (1987)CrossRef
37.
go back to reference Livanos, G., Ranganathan, N., Jiang, J.: Heart sound analysis using the S-transform. In: Computers in Cardiology, pp. 587–590 (2000) Livanos, G., Ranganathan, N., Jiang, J.: Heart sound analysis using the S-transform. In: Computers in Cardiology, pp. 587–590 (2000)
38.
go back to reference Lukkarinen, S., Noponen, A.L., Sikio, K., Angerla, A.: A new phonocardiographic recording system. In: Computers in Cardiology, pp. 117–120 (1997) Lukkarinen, S., Noponen, A.L., Sikio, K., Angerla, A.: A new phonocardiographic recording system. In: Computers in Cardiology, pp. 117–120 (1997)
39.
go back to reference Maglogiannis, I., Loukis, E., Zafiropoulos, E., Stasis, A.: Support vectors machine-based identification of heart valve diseases using heart sounds. Comput. Methods Programs Biomed. 95, 47–61 (2009)CrossRef Maglogiannis, I., Loukis, E., Zafiropoulos, E., Stasis, A.: Support vectors machine-based identification of heart valve diseases using heart sounds. Comput. Methods Programs Biomed. 95, 47–61 (2009)CrossRef
40.
go back to reference Malarvili, M.B., Kamarulafizam, I., Hussain, S., and Helmi, D.: Heart sound segmentation algorithm based on instantaneous energy of electrocardiogram. In: Computers in Cardiology, pp. 327–330 (2003) Malarvili, M.B., Kamarulafizam, I., Hussain, S., and Helmi, D.: Heart sound segmentation algorithm based on instantaneous energy of electrocardiogram. In: Computers in Cardiology, pp. 327–330 (2003)
41.
go back to reference Mangione, S., Nieman, L.Z.: Cardiac auscultatory skills of internal medicine and family practice trainees. J. Am. Med. Assoc. 278, 717–722 (1997)CrossRef Mangione, S., Nieman, L.Z.: Cardiac auscultatory skills of internal medicine and family practice trainees. J. Am. Med. Assoc. 278, 717–722 (1997)CrossRef
42.
go back to reference Messer, S.R., Agzarian, J., Abbott, D.: Optimal wavelet denoising for phonocardiograms. J. Microelectron. 32, 931–941 (2001)CrossRef Messer, S.R., Agzarian, J., Abbott, D.: Optimal wavelet denoising for phonocardiograms. J. Microelectron. 32, 931–941 (2001)CrossRef
43.
go back to reference Moukadem, A., Dieterlen, A., Hueber, N., Brandt, C.: Comparative study of heart sounds localization. In: Proceedings of SPIE N8068-27, Bioelectronics, Biomedical, and Bioinspired Systems (2011). Moukadem, A., Dieterlen, A., Hueber, N., Brandt, C.: Comparative study of heart sounds localization. In: Proceedings of SPIE N8068-27, Bioelectronics, Biomedical, and Bioinspired Systems (2011).
44.
go back to reference Moukadem, A., Dieterlen, A., Hueber, N., and Brandt, C.: Localization of heart sounds based on S-transform and radial basis function neural network. In: IFMBE Proceedings of 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, pp. 168–171 (2011) Moukadem, A., Dieterlen, A., Hueber, N., and Brandt, C.: Localization of heart sounds based on S-transform and radial basis function neural network. In: IFMBE Proceedings of 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, pp. 168–171 (2011)
45.
go back to reference Moukadem, A., Dieterlen, A., Hueber, N., Brandt, C.: A robust heart sounds segmentation module based on S-transform. Biomed. Signal Process. Control 8(3), 273–281 (2013)CrossRef Moukadem, A., Dieterlen, A., Hueber, N., Brandt, C.: A robust heart sounds segmentation module based on S-transform. Biomed. Signal Process. Control 8(3), 273–281 (2013)CrossRef
46.
go back to reference Myint, W.W., Dillard, B.: An electronic stethoscope with diagnosis capability. In: Proc.of the 33rd IEEE Southeastern Symposium on System Theory, pp. 133–137. Athens, OH (2001) Myint, W.W., Dillard, B.: An electronic stethoscope with diagnosis capability. In: Proc.of the 33rd IEEE Southeastern Symposium on System Theory, pp. 133–137. Athens, OH (2001)
47.
go back to reference Naseri, H., Homaeinezhad, M.R.: Detection and boundary identification of phonocardiogram sounds using an expert frequency-energy based metric. Ann. Biomed. Eng. 41(2), 279–292 (2013)CrossRef Naseri, H., Homaeinezhad, M.R.: Detection and boundary identification of phonocardiogram sounds using an expert frequency-energy based metric. Ann. Biomed. Eng. 41(2), 279–292 (2013)CrossRef
48.
go back to reference Nieblas, C.I., Alonso, M.A., Conte, R., Villarreal. S.: High performance heart sound segmentation algorithm based on matching pursuit. In: IEEE Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pp. 96–100. Napa, CA (2013) Nieblas, C.I., Alonso, M.A., Conte, R., Villarreal. S.: High performance heart sound segmentation algorithm based on matching pursuit. In: IEEE Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pp. 96–100. Napa, CA (2013)
49.
go back to reference Ölmez, T., Dokur, Z.: Classification of heart sounds using an artificial neural network. Pattern Recogn. Lett. 24, 617–629 (2003)CrossRef Ölmez, T., Dokur, Z.: Classification of heart sounds using an artificial neural network. Pattern Recogn. Lett. 24, 617–629 (2003)CrossRef
50.
go back to reference Pasterkamp, H., Kraman, S.S., Wodicka, G.R.: Respiratory sounds: advances beyond the stethoscope. Am. J. Respir. Crit. Care Med., 974–987 (1997) Pasterkamp, H., Kraman, S.S., Wodicka, G.R.: Respiratory sounds: advances beyond the stethoscope. Am. J. Respir. Crit. Care Med., 974–987 (1997)
51.
go back to reference Patidar, S., Pachori, R.B.: Constrained tunable-Q wavelet transform based analysis of cardiac sound signals. AASRI Procedia 4, 57–63 (2013)CrossRef Patidar, S., Pachori, R.B.: Constrained tunable-Q wavelet transform based analysis of cardiac sound signals. AASRI Procedia 4, 57–63 (2013)CrossRef
52.
go back to reference Patidar, S., Pachori, R.B.: Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform. Biomed. Signal Process. Control 8(6), 559–567 (2013)CrossRef Patidar, S., Pachori, R.B.: Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform. Biomed. Signal Process. Control 8(6), 559–567 (2013)CrossRef
53.
go back to reference Patidar, S., Pachori, R.B.: A continuous wavelet transform based method for detecting heart valve disorders using phonocardiograph signals. In: International Conference on Convergence and Hybrid Information Technology, pp. 513–520. Daejeon, Korea (2012) Patidar, S., Pachori, R.B.: A continuous wavelet transform based method for detecting heart valve disorders using phonocardiograph signals. In: International Conference on Convergence and Hybrid Information Technology, pp. 513–520. Daejeon, Korea (2012)
54.
go back to reference Pease A.: If the heart could speak. Pictures Future, pp. 60–61 (2001) Pease A.: If the heart could speak. Pictures Future, pp. 60–61 (2001)
55.
go back to reference Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Nat. Acad. Sci., 2297–2301 (1991) Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Nat. Acad. Sci., 2297–2301 (1991)
56.
go back to reference Rajan, S., Doraiswami, R., Stevenson, R., and Watrous, R.: Wavelet based bank of correlators approach for phonocardiogram signal classification. In: Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, pp. 77–80. Pittsburgh, PA (1998) Rajan, S., Doraiswami, R., Stevenson, R., and Watrous, R.: Wavelet based bank of correlators approach for phonocardiogram signal classification. In: Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, pp. 77–80. Pittsburgh, PA (1998)
57.
go back to reference Rangayyan, R.M., Lehner, R.J.: Phonocardiogram signal analysis: a review. Crit. Rev. Biomed. Eng. 15(3), 211–236 (1986) Rangayyan, R.M., Lehner, R.J.: Phonocardiogram signal analysis: a review. Crit. Rev. Biomed. Eng. 15(3), 211–236 (1986)
58.
go back to reference Reed, T., Reed, N., and Fritzson, P.: Analysis of heart sounds for symptom detection and machine-aided diagnosis. In: 2nd Conference Modeling and Simulation in Biology, Medicine, and Biomedical Engineering, pp. 1–6. Delft, The Netherlands (2001) Reed, T., Reed, N., and Fritzson, P.: Analysis of heart sounds for symptom detection and machine-aided diagnosis. In: 2nd Conference Modeling and Simulation in Biology, Medicine, and Biomedical Engineering, pp. 1–6. Delft, The Netherlands (2001)
59.
go back to reference Reed, T.R., Reed, N.E., Fritzson, P.: Heart sound analysis for symptom detection and computer-aided diagnosis. Simul. Model. Pract. Theory 12, 129–146 (2004)CrossRef Reed, T.R., Reed, N.E., Fritzson, P.: Heart sound analysis for symptom detection and computer-aided diagnosis. Simul. Model. Pract. Theory 12, 129–146 (2004)CrossRef
60.
go back to reference Rumelhart, D.E., McClelland, J.L.: Parallel distributed processing: Explorations in the Microstructure of Cognition: Foundations. MIT Press, Cambridge, MA (1986) Rumelhart, D.E., McClelland, J.L.: Parallel distributed processing: Explorations in the Microstructure of Cognition: Foundations. MIT Press, Cambridge, MA (1986)
61.
go back to reference Sabeti, M., Katebi, S., Boostani, R.: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif. Intell. Med. 47, 263–274 (2009)CrossRef Sabeti, M., Katebi, S., Boostani, R.: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif. Intell. Med. 47, 263–274 (2009)CrossRef
62.
go back to reference Sanei, S., Ghodsi, M., Hassani, H.: An adaptive singular spectrum analysis approach to murmur detection from heart sounds. Med. Eng. Phys. 33(3), 362–367 (2011)CrossRef Sanei, S., Ghodsi, M., Hassani, H.: An adaptive singular spectrum analysis approach to murmur detection from heart sounds. Med. Eng. Phys. 33(3), 362–367 (2011)CrossRef
63.
go back to reference Schmidt, S.E., Holst-Hansen, C., Graff, C., Toft, E., Struijk, J.J.: Segmentation of heart sound recordings by a duration-dependent hidden Markov model. Physiol. Meas. 31(4), 513–529 (2010)CrossRef Schmidt, S.E., Holst-Hansen, C., Graff, C., Toft, E., Struijk, J.J.: Segmentation of heart sound recordings by a duration-dependent hidden Markov model. Physiol. Meas. 31(4), 513–529 (2010)CrossRef
64.
go back to reference Sejdic, E., Jiang, J.: Comparative study of three time-frequency representations with applications to a novel correlation method. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 633–636 (2004) Sejdic, E., Jiang, J.: Comparative study of three time-frequency representations with applications to a novel correlation method. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 633–636 (2004)
65.
66.
go back to reference Sepehri, A.A., Gharehbaghi, A., Dutoit, T., Kocharian, A., Kiani, A.: A novel method for pediatric heart sound segmentation without using the ECG. Comput. Methods Programs Biomed. 99, 43–48 (2010)CrossRef Sepehri, A.A., Gharehbaghi, A., Dutoit, T., Kocharian, A., Kiani, A.: A novel method for pediatric heart sound segmentation without using the ECG. Comput. Methods Programs Biomed. 99, 43–48 (2010)CrossRef
67.
go back to reference Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press, Champaign (1963) Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press, Champaign (1963)
68.
go back to reference Shino, H., Yoshida, H., Yana, K., Harada, K. Sudoh, J., Harasewa, E.: Detection and classification of systolic murmur for phonocardiogram screening. In: Proceedings of 18th International Conference of the IEEE Engineering in Medical and Biology Society, pp. 123–124 (1996) Shino, H., Yoshida, H., Yana, K., Harada, K. Sudoh, J., Harasewa, E.: Detection and classification of systolic murmur for phonocardiogram screening. In: Proceedings of 18th International Conference of the IEEE Engineering in Medical and Biology Society, pp. 123–124 (1996)
69.
go back to reference Sun, S., Jiang, Z., Wang, H., Fang, Y.: Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform. Comput. Methods Programs Biomed. 114 (3), 219-230 (2014) Sun, S., Jiang, Z., Wang, H., Fang, Y.: Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform. Comput. Methods Programs Biomed. 114 (3), 219-230 (2014)
70.
go back to reference Sun, S., Wang, H., Jiang, Z., Fang, Y., Tao, T.: Segmentation-based heart sound feature extraction combined with classifier models for a VSD diagnosis system. Expert Syst. Appl. 41 (4), 1769–1780 (2014) Sun, S., Wang, H., Jiang, Z., Fang, Y., Tao, T.: Segmentation-based heart sound feature extraction combined with classifier models for a VSD diagnosis system. Expert Syst. Appl. 41 (4), 1769–1780 (2014)
71.
go back to reference Syed, Z., Leeds, D., Curtis, D., Nesta, F., Levine, R.A., Guttag, J.: A framework for the analysis of acoustical cardiac signals. IEEE Trans. Biomed. Eng. 54(4), 651–662 (2007)CrossRef Syed, Z., Leeds, D., Curtis, D., Nesta, F., Levine, R.A., Guttag, J.: A framework for the analysis of acoustical cardiac signals. IEEE Trans. Biomed. Eng. 54(4), 651–662 (2007)CrossRef
72.
go back to reference Tang, H., Li, T., Qiu, T., Park, Y.: Segmentation of heart sounds based on dynamic clustering. Biomed. Signal Process. Control 7(5), 509–516 (2012)CrossRef Tang, H., Li, T., Qiu, T., Park, Y.: Segmentation of heart sounds based on dynamic clustering. Biomed. Signal Process. Control 7(5), 509–516 (2012)CrossRef
73.
go back to reference Thompson, W.R., Hayek, C.S., Tuchinda, C., Telford, J.K., Lombardo, J.S.: Automated cardiac auscultation for detection of pathologic heart murmurs, Pediatr. Cardiol, 373–379 (2001) Thompson, W.R., Hayek, C.S., Tuchinda, C., Telford, J.K., Lombardo, J.S.: Automated cardiac auscultation for detection of pathologic heart murmurs, Pediatr. Cardiol, 373–379 (2001)
74.
go back to reference Tseng, Y.L., Ko, P.Y., Jaw, F.S.: Detection of the third and fourth heart sounds using Hilbert-Huang transform. BioMed. Eng. OnLine 11(8), 1–13 (2012) Tseng, Y.L., Ko, P.Y., Jaw, F.S.: Detection of the third and fourth heart sounds using Hilbert-Huang transform. BioMed. Eng. OnLine 11(8), 1–13 (2012)
75.
go back to reference Vepa, J., Tolay, P., Jain, A.: Segmentation of heart sounds using simplicity features and timing information. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 469–472 (2008) Vepa, J., Tolay, P., Jain, A.: Segmentation of heart sounds using simplicity features and timing information. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 469–472 (2008)
76.
go back to reference Wang, P., Lim, C.S., Chauhan, S., Foo, J.Y.A., Anantharaman, V.: Phonocardiographic signal analysis method using a modified hidden Markov model. Ann. Biomed. Eng. 35(3), 367–374 (2007)CrossRefMATH Wang, P., Lim, C.S., Chauhan, S., Foo, J.Y.A., Anantharaman, V.: Phonocardiographic signal analysis method using a modified hidden Markov model. Ann. Biomed. Eng. 35(3), 367–374 (2007)CrossRefMATH
77.
go back to reference Watrous, R.L.: Computer-Aided auscultation of the heart: From anatomy and physiology to diagnostic decision support. In: Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 140–143. New York, USA (2006) Watrous, R.L.: Computer-Aided auscultation of the heart: From anatomy and physiology to diagnostic decision support. In: Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 140–143. New York, USA (2006)
78.
go back to reference Yan, Z., Jiang, Z., Miyamoto, A., Wei, Y.: The moment segmentation analysis of heart sound pattern. Comput. Methods Programs Biomed. 98, 140–150 (2010)CrossRef Yan, Z., Jiang, Z., Miyamoto, A., Wei, Y.: The moment segmentation analysis of heart sound pattern. Comput. Methods Programs Biomed. 98, 140–150 (2010)CrossRef
79.
go back to reference Yuan, J., He, Z., Zi, Y.: Gear fault detection using customized multiwavelet lifting schemes. Mech. Syst. Signal Process. 24(5), 1509–1528 (2010)CrossRef Yuan, J., He, Z., Zi, Y.: Gear fault detection using customized multiwavelet lifting schemes. Mech. Syst. Signal Process. 24(5), 1509–1528 (2010)CrossRef
80.
go back to reference Yuenyong, S., Nishihara, A., Kongprawechnon, W., Tungpimolrut, K.: A framework for automatic heart sound analysis without segmentation. BioMed. Eng. Online 10, 01-23 (2011)CrossRef Yuenyong, S., Nishihara, A., Kongprawechnon, W., Tungpimolrut, K.: A framework for automatic heart sound analysis without segmentation. BioMed. Eng. Online 10, 01-23 (2011)CrossRef
Metadata
Title
Classification of Heart Disorders Based on Tunable-Q Wavelet Transform of Cardiac Sound Signals
Authors
Shivnarayan Patidar
Ram Bilas Pachori
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-13132-0_10

Premium Partner