Skip to main content
Top

2019 | OriginalPaper | Chapter

9. Classification of Nanostructured Materials

Author : Loutfy H. Madkour

Published in: Nanoelectronic Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nano materials can be classified dimension wise into following categories.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Rao, C.N.R., Nath, M.: Inorganic nanotubes. Dalton Trans. 1–24 (2003) Rao, C.N.R., Nath, M.: Inorganic nanotubes. Dalton Trans. 1–24 (2003)
3.
go back to reference Ikkala, O., Brinke, G.T.: Functional materials based on self-assembly of polymeric supramolecules. Science 295(5564), 2407–2409 (2002). New Series Ikkala, O., Brinke, G.T.: Functional materials based on self-assembly of polymeric supramolecules. Science 295(5564), 2407–2409 (2002). New Series
4.
go back to reference Van Swygenhoven, H., Caro, A., Farkas, D.: A molecular dynamics study of polycrystalline FCC metals at the nanoscale Grain boundary structure and its influence on plastic deformation. Mater. Sci. Eng. A (2001) Van Swygenhoven, H., Caro, A., Farkas, D.: A molecular dynamics study of polycrystalline FCC metals at the nanoscale Grain boundary structure and its influence on plastic deformation. Mater. Sci. Eng. A (2001)
5.
go back to reference Braginsky, L., Shklover, V., Hofmann, H., Bowen, P.: High-temperature thermal conductivity of porous Al2O3 nanostructures. Phys. Rev. B 70, 134201 (2004)CrossRef Braginsky, L., Shklover, V., Hofmann, H., Bowen, P.: High-temperature thermal conductivity of porous Al2O3 nanostructures. Phys. Rev. B 70, 134201 (2004)CrossRef
6.
go back to reference Braginsky, L., Lukzen, N., Shklover, V., Hofmann, H.: Phys. Rev. B 66, 134203 (2002)CrossRef Braginsky, L., Lukzen, N., Shklover, V., Hofmann, H.: Phys. Rev. B 66, 134203 (2002)CrossRef
11.
go back to reference Yao, Z., et al.: In: Dresselhaus, M.S., et al. (eds.) Carbon Nanotubes: Synthesis, Structure, Properties and Applications, p. 147. Springer, New York (2000) Yao, Z., et al.: In: Dresselhaus, M.S., et al. (eds.) Carbon Nanotubes: Synthesis, Structure, Properties and Applications, p. 147. Springer, New York (2000)
15.
go back to reference Levitt, A.P. (ed.): Whisker Technology. Wiley, New York (1970) Levitt, A.P. (ed.): Whisker Technology. Wiley, New York (1970)
40.
44.
52.
53.
60.
go back to reference Sze, S.M., Ng, K.K.: Physics of semiconductor devices. Wiley (2006) Sze, S.M., Ng, K.K.: Physics of semiconductor devices. Wiley (2006)
61.
go back to reference Liu, T.J.K., Chang, L.: Transistor scaling to the limit. In: Huff, H. (eds.) Into the Nano Era. Springer, Berlin, Heidelberg, pp. 191–223 (2009) Liu, T.J.K., Chang, L.: Transistor scaling to the limit. In: Huff, H. (eds.) Into the Nano Era. Springer, Berlin, Heidelberg, pp. 191–223 (2009)
62.
go back to reference Ghibaudo, G.: Evaluation of variability performance of junctionless and conventional Trigate transistors, Solid-State Electron. 75, 13–15 (2012)CrossRef Ghibaudo, G.: Evaluation of variability performance of junctionless and conventional Trigate transistors, Solid-State Electron. 75, 13–15 (2012)CrossRef
63.
go back to reference Kim, D.M.: Introductory quantum mechanics for semiconductor nanotechnology. Wiley (2010) Kim, D.M.: Introductory quantum mechanics for semiconductor nanotechnology. Wiley (2010)
64.
go back to reference von Haartman, M., Östling, M.: Low-frequency noise in advanced MOS devices. Springer (2010) von Haartman, M., Östling, M.: Low-frequency noise in advanced MOS devices. Springer (2010)
65.
go back to reference Ellinger, F.: Radio frequency integrated circuits and technologies. Springer (2008) Ellinger, F.: Radio frequency integrated circuits and technologies. Springer (2008)
66.
go back to reference Shulaker, M.M., Hills, G., Patil, N., Wei, H., Chen, H.-Y., Wong, H.S.P., Mitra, S.: Carbon nanotube computer, Nature 501(7468), 526–530 (2013)CrossRef Shulaker, M.M., Hills, G., Patil, N., Wei, H., Chen, H.-Y., Wong, H.S.P., Mitra, S.: Carbon nanotube computer, Nature 501(7468), 526–530 (2013)CrossRef
69.
go back to reference Wagner, R.S., Ellis, W.C.: Vapor-solid-growth mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)CrossRef Wagner, R.S., Ellis, W.C.: Vapor-solid-growth mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)CrossRef
70.
go back to reference Wagner, R.S.: VLS mechanism of crystal growth. In: Levitt, A.P. (ed.) Whisker Technology. Wiley, New York (1970) Wagner, R.S.: VLS mechanism of crystal growth. In: Levitt, A.P. (ed.) Whisker Technology. Wiley, New York (1970)
Metadata
Title
Classification of Nanostructured Materials
Author
Loutfy H. Madkour
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-21621-4_9

Premium Partners