Skip to main content
Top

2017 | OriginalPaper | Chapter

Classifying Heart Sounds Using Images of MFCC and Temporal Features

Authors : Diogo Marcelo Nogueira, Carlos Abreu Ferreira, Alípio M. Jorge

Published in: Progress in Artificial Intelligence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Phonocardiogram signals contain very useful information about the condition of the heart. It is a method of registration of heart sounds, which can be visually represented on a chart. By analyzing these signals, early detections and diagnosis of heart diseases can be done. Intelligent and automated analysis of the phonocardiogram is therefore very important, to determine whether the patient’s heart works properly or should be referred to an expert for further evaluation. In this work, we use electrocardiograms and phonocardiograms collected simultaneously, from the Physionet challenge database, and we aim to determine whether a phonocardiogram corresponds to a “normal” or “abnormal” physiological state. The main idea is to translate a 1D phonocardiogram signal into a 2D image that represents temporal and Mel-frequency cepstral coefficients features. To do that, we develop a novel approach that uses both features. First we segment the phonocardiogram signals with an algorithm based on a logistic regression hidden semi-Markov model, which uses the electrocardiogram signals as reference. After that, we extract a group of features from the time and frequency domain (Mel-frequency cepstral coefficients) of the phonocardiogram. Then, we combine these features into a two-dimensional time-frequency heat map representation. Lastly, we run a binary classifier to learn a model that discriminates between normal and abnormal phonocardiogram signals.
In the experiments, we study the contribution of temporal and Mel-frequency cepstral coefficients features and evaluate three classification algorithms: Support Vector Machines, Convolutional Neural Network, and Random Forest. The best results are achieved when we map both temporal and Mel-frequency cepstral coefficients features into a 2D image and use the Support Vector Machines with a radial basis function kernel. Indeed, by including both temporal and Mel-frequency cepstral coefficients features, we obtain sligthly better results than the ones reported by the challenge participants, which use large amounts of data and high computational power.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Avendaño-Valencia, L.D., Godino-Llorente, J.I., Blanco-Velasco, M., Castellanos-Dominguez, G.: Feature extraction from parametric time-frequency representations for heart murmur detection. Ann. Biomed. Eng. 38(8), 2716–2732 (2010)CrossRef Avendaño-Valencia, L.D., Godino-Llorente, J.I., Blanco-Velasco, M., Castellanos-Dominguez, G.: Feature extraction from parametric time-frequency representations for heart murmur detection. Ann. Biomed. Eng. 38(8), 2716–2732 (2010)CrossRef
3.
go back to reference Balili, C.C., Sobrepena, M.C.C., Naval, P.C.: Classification of heart sounds using discrete and continuous wavelet transform and random forests. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 655–659, November 2015 Balili, C.C., Sobrepena, M.C.C., Naval, P.C.: Classification of heart sounds using discrete and continuous wavelet transform and random forests. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 655–659, November 2015
4.
go back to reference Barschdorff, D., Bothe, A., Rengshausen, U.: Heart sound analysis using neural and statistical classifiers: a comparison. In: Proceedings of Computers in Cardiology, pp. 415–418, September 1989 Barschdorff, D., Bothe, A., Rengshausen, U.: Heart sound analysis using neural and statistical classifiers: a comparison. In: Proceedings of Computers in Cardiology, pp. 415–418, September 1989
5.
go back to reference Boussaa, M., Atouf, I., Atibi, M., Bennis, A.: ECG signals classification using MFCC coefficients and ANN classifier. In: 2016 International Conference on Electrical and Information Technologies (ICEIT), pp. 480–484, May 2016 Boussaa, M., Atouf, I., Atibi, M., Bennis, A.: ECG signals classification using MFCC coefficients and ANN classifier. In: 2016 International Conference on Electrical and Information Technologies (ICEIT), pp. 480–484, May 2016
6.
go back to reference Boutana, D., Benidir, M., Barkat, B.: Segmentation and identification of some pathological phonocardiogram signals using time-frequency analysis. IET Sig. Proc. 5, 527–537 (2011)MathSciNetCrossRef Boutana, D., Benidir, M., Barkat, B.: Segmentation and identification of some pathological phonocardiogram signals using time-frequency analysis. IET Sig. Proc. 5, 527–537 (2011)MathSciNetCrossRef
7.
go back to reference Chen, T.E., Yang, S.I., Ho, L.T., et al.: S1 and S2 heart sound recognition using deep neural networks. IEEE Trans. Biomed. Eng. 64(2), 372–380 (2017)CrossRef Chen, T.E., Yang, S.I., Ho, L.T., et al.: S1 and S2 heart sound recognition using deep neural networks. IEEE Trans. Biomed. Eng. 64(2), 372–380 (2017)CrossRef
8.
go back to reference Choi, S., Jiang, Z.: Cardiac sound murmurs classification with autoregressive spectral analysis and multi-support vector machine technique. Comput. Biol. Med. 40(1), 8–20 (2010)CrossRef Choi, S., Jiang, Z.: Cardiac sound murmurs classification with autoregressive spectral analysis and multi-support vector machine technique. Comput. Biol. Med. 40(1), 8–20 (2010)CrossRef
9.
go back to reference Colonna, J., Peet, T., Ferreira, C.A., Jorge, A.M., Gomes, E.F., Gama, J.A.: Automatic classification of anuran sounds using convolutional neural networks. In: Proceedings of the Ninth International C* Conference on Computer Science and Software Engineering, C3S2E 2016, pp. 73–78. ACM (2016) Colonna, J., Peet, T., Ferreira, C.A., Jorge, A.M., Gomes, E.F., Gama, J.A.: Automatic classification of anuran sounds using convolutional neural networks. In: Proceedings of the Ninth International C* Conference on Computer Science and Software Engineering, C3S2E 2016, pp. 73–78. ACM (2016)
10.
go back to reference El-Segaier, M., Lilja, O., Lukkarinen, S., Slrnmo, L., Sepponen, R.: Computer-based detection and analysis of heart sound and murmur. Ann. Biomed. Eng. 33(7), 937–942 (2005)CrossRef El-Segaier, M., Lilja, O., Lukkarinen, S., Slrnmo, L., Sepponen, R.: Computer-based detection and analysis of heart sound and murmur. Ann. Biomed. Eng. 33(7), 937–942 (2005)CrossRef
11.
go back to reference Ergen, B., Tatar, Y., Gulcur, H.O.: Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study. Comput. Methods Biomech. Biomed. Eng. 15(4), 371–381 (2012)CrossRef Ergen, B., Tatar, Y., Gulcur, H.O.: Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study. Comput. Methods Biomech. Biomed. Eng. 15(4), 371–381 (2012)CrossRef
12.
go back to reference Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRef Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRef
13.
go back to reference Groch, M.W., Domnanovich, J.R., Erwin, W.D.: A new heart-sounds gating device for medical imaging. IEEE Trans. Biomed. Eng. 39(3), 307–310 (1992)CrossRef Groch, M.W., Domnanovich, J.R., Erwin, W.D.: A new heart-sounds gating device for medical imaging. IEEE Trans. Biomed. Eng. 39(3), 307–310 (1992)CrossRef
14.
go back to reference Gupta, C.N., Palaniappan, R., Swaminathan, S., Krishnan, S.M.: Neural network classification of homomorphic segmented heart sounds. Appl. Soft Comput. 7(1), 286–297 (2007)CrossRef Gupta, C.N., Palaniappan, R., Swaminathan, S., Krishnan, S.M.: Neural network classification of homomorphic segmented heart sounds. Appl. Soft Comput. 7(1), 286–297 (2007)CrossRef
15.
go back to reference Hanna, I.R., Silverman, M.E.: A history of cardiac auscultation and some of its contributors. Am. J. Cardiol. 90(3), 259–267 (2002)CrossRef Hanna, I.R., Silverman, M.E.: A history of cardiac auscultation and some of its contributors. Am. J. Cardiol. 90(3), 259–267 (2002)CrossRef
16.
go back to reference Huiying, L., Sakari, L., Iiro, H.: A heart sound segmentation algorithm using wavelet decomposition and reconstruction. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 1630–1633, October 1997 Huiying, L., Sakari, L., Iiro, H.: A heart sound segmentation algorithm using wavelet decomposition and reconstruction. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 1630–1633, October 1997
17.
go back to reference Iwata, A., Ishii, N., Suzumura, N., Ikegaya, K.: Algorithm for detecting the first and the second heart sounds by spectral tracking. Med. Biol. Eng. Comput. 18(1), 19–26 (1980)CrossRef Iwata, A., Ishii, N., Suzumura, N., Ikegaya, K.: Algorithm for detecting the first and the second heart sounds by spectral tracking. Med. Biol. Eng. Comput. 18(1), 19–26 (1980)CrossRef
18.
go back to reference Kishore, K.V.K., Satish, P.K.: Emotion recognition in speech using MFCC and wavelet features. In: 2013 3rd IEEE International Advance Computing Conference (IACC), pp. 842–847, February 2013 Kishore, K.V.K., Satish, P.K.: Emotion recognition in speech using MFCC and wavelet features. In: 2013 3rd IEEE International Advance Computing Conference (IACC), pp. 842–847, February 2013
19.
go back to reference Kumar, D., Carvalho, P., Antunes, M., Paiva, R.P., Henriques, J.: Heart murmur classification with feature selection. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 4566–4569, August 2010 Kumar, D., Carvalho, P., Antunes, M., Paiva, R.P., Henriques, J.: Heart murmur classification with feature selection. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 4566–4569, August 2010
20.
go back to reference Lalitha, S., Geyasruti, D., Narayanan, R., Shravani, M.: Emotion detection using MFCC and Cepstrum features. Procedia Comput. Sci. 70, 29–35 (2015)CrossRef Lalitha, S., Geyasruti, D., Narayanan, R., Shravani, M.: Emotion detection using MFCC and Cepstrum features. Procedia Comput. Sci. 70, 29–35 (2015)CrossRef
21.
go back to reference Liu, C., Springer, D., Li, Q., Moody, B., Juan, R.A., Chorro, F.J., Castells, F., Roig, J.M., Silva, I., Johnson, A.E.W., Syed, Z., Schmidt, S.E., Papadaniil, C.D., Hadjileontiadis, L., Naseri, H., Moukadem, A., Dieterlen, A., Brandt, C., Tang, H., Samieinasab, M., Samieinasab, M.R., Sameni, R., Mark, R.G., Clifford, G.D.: An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 37(12), 2181 (2016)CrossRef Liu, C., Springer, D., Li, Q., Moody, B., Juan, R.A., Chorro, F.J., Castells, F., Roig, J.M., Silva, I., Johnson, A.E.W., Syed, Z., Schmidt, S.E., Papadaniil, C.D., Hadjileontiadis, L., Naseri, H., Moukadem, A., Dieterlen, A., Brandt, C., Tang, H., Samieinasab, M., Samieinasab, M.R., Sameni, R., Mark, R.G., Clifford, G.D.: An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 37(12), 2181 (2016)CrossRef
22.
go back to reference Lubaib, P., Muneer, K.A.: The heart defect analysis based on PCG signals using pattern recognition techniques. Procedia Technol. 24, 1024–1031 (2016)CrossRef Lubaib, P., Muneer, K.A.: The heart defect analysis based on PCG signals using pattern recognition techniques. Procedia Technol. 24, 1024–1031 (2016)CrossRef
23.
go back to reference Malarvili, M.B., Kamarulafizam, I., Hussain, S., Helmi, D.: Heart sound segmentation algorithm based on instantaneous energy of electrocardiogram. In: Computers in Cardiology, pp. 327–330, September 2003 Malarvili, M.B., Kamarulafizam, I., Hussain, S., Helmi, D.: Heart sound segmentation algorithm based on instantaneous energy of electrocardiogram. In: Computers in Cardiology, pp. 327–330, September 2003
24.
go back to reference Mozaffarian, D., Benjamin, E.J., Go, A.S., et al.: Heart disease and stroke statistics–2016 update. Circulation 133(4), e38–e360 (2015) Mozaffarian, D., Benjamin, E.J., Go, A.S., et al.: Heart disease and stroke statistics–2016 update. Circulation 133(4), e38–e360 (2015)
25.
go back to reference Obaidat, M.S.: Phonocardiogram signal analysis: techniques and performance comparison. J. Med. Eng. Technol. 17(6), 221–227 (1993)CrossRef Obaidat, M.S.: Phonocardiogram signal analysis: techniques and performance comparison. J. Med. Eng. Technol. 17(6), 221–227 (1993)CrossRef
26.
go back to reference Rangayyan, R., Lehner, R.: Phonocardiogram signal analysis: a review. Crit. Rev. Biomed. Eng. 15(3), 211–236 (1987) Rangayyan, R., Lehner, R.: Phonocardiogram signal analysis: a review. Crit. Rev. Biomed. Eng. 15(3), 211–236 (1987)
27.
go back to reference Rubin, J., Abreu, R., Ganguli, A., Nelaturi, S., Matei, I., Sricharan, K.: Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients. In: Computing in Cardiology Conference (CinC), pp. 813–816. IEEE (2016) Rubin, J., Abreu, R., Ganguli, A., Nelaturi, S., Matei, I., Sricharan, K.: Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients. In: Computing in Cardiology Conference (CinC), pp. 813–816. IEEE (2016)
28.
go back to reference Santos, M.A.R., Souza, M.N.: Detection of first and second cardiac sounds based on time frequency analysis. In: Proceedings of the 23rd Annual EMBS International Conference, October 2001 Santos, M.A.R., Souza, M.N.: Detection of first and second cardiac sounds based on time frequency analysis. In: Proceedings of the 23rd Annual EMBS International Conference, October 2001
29.
go back to reference Shi, W., Gong, Y., Wang, J.: Improving CNN performance with min-max objective. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 2004–2010. AAAI Press (2016) Shi, W., Gong, Y., Wang, J.: Improving CNN performance with min-max objective. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 2004–2010. AAAI Press (2016)
30.
go back to reference Springer, D.B., Tarassenko, L., Clifford, G.D.: Logistic regression-hsmm-based heart sound segmentation. IEEE Trans. Biomed. Eng. 63(4), 822–832 (2016) Springer, D.B., Tarassenko, L., Clifford, G.D.: Logistic regression-hsmm-based heart sound segmentation. IEEE Trans. Biomed. Eng. 63(4), 822–832 (2016)
31.
go back to reference Rathikarani, V., Dhanalakshmi, P.: Automatic classification of ECG signal for identifying arrhythmia. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(9) (2013) Rathikarani, V., Dhanalakshmi, P.: Automatic classification of ECG signal for identifying arrhythmia. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(9) (2013)
32.
go back to reference White, P.R., Collis, W.B., Salmon, A.P.: Time-frequency analysis of heart murmurs in children. In: IEE Colloquium on Time-Frequency Analysis of Biomedical Signals (Digest No. 1997/006), pp. 3/1–3/4 (1997) White, P.R., Collis, W.B., Salmon, A.P.: Time-frequency analysis of heart murmurs in children. In: IEE Colloquium on Time-Frequency Analysis of Biomedical Signals (Digest No. 1997/006), pp. 3/1–3/4 (1997)
33.
go back to reference Wu, J.B., Zhou, S., Wu, Z., Wu, X.M.: Research on the method of characteristic extraction and classification of phonocardiogram. In: 2012 International Conference on Systems and Informatics (ICSAI 2012), pp. 1732–1735, May 2012 Wu, J.B., Zhou, S., Wu, Z., Wu, X.M.: Research on the method of characteristic extraction and classification of phonocardiogram. In: 2012 International Conference on Systems and Informatics (ICSAI 2012), pp. 1732–1735, May 2012
34.
go back to reference Jiang, Z., Choi, S.: A cardiac sound characteristic waveform method for in-home heart disorder monitoring with electric stethoscope. Expert Syst. Appl. 31, 286–298 (2006)CrossRef Jiang, Z., Choi, S.: A cardiac sound characteristic waveform method for in-home heart disorder monitoring with electric stethoscope. Expert Syst. Appl. 31, 286–298 (2006)CrossRef
35.
go back to reference Zhang, Y.D., Yang, Z.J., Lu, H.M., Zhou, X.X., Phillips, P., Liu, Q.M., Wang, S.H.: Facial emotion recognition based on biorthogonal wavelet entropy, fuzzy support vector machine, and stratified cross validation. IEEE Access 4, 8375–8385 (2016)CrossRef Zhang, Y.D., Yang, Z.J., Lu, H.M., Zhou, X.X., Phillips, P., Liu, Q.M., Wang, S.H.: Facial emotion recognition based on biorthogonal wavelet entropy, fuzzy support vector machine, and stratified cross validation. IEEE Access 4, 8375–8385 (2016)CrossRef
Metadata
Title
Classifying Heart Sounds Using Images of MFCC and Temporal Features
Authors
Diogo Marcelo Nogueira
Carlos Abreu Ferreira
Alípio M. Jorge
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-65340-2_16

Premium Partner