Skip to main content
Top

2021 | OriginalPaper | Chapter

Climate Precipitation Prediction with Uncertainty Quantification by Self-configuring Neural Network

Authors : Juliana A. Anochi, Reynier Hernández Torres, Haroldo F. Campos Velho

Published in: Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Artificial neural networks have been employed on many applications. Good results have been obtained by using neural network for the precipitation climate prediction to the Brazil. The input are some meteorological variables, as wind components for several levels, air temperature, and former precipitation. The neural network is automatically configured, by solving an optimization problem with Multi-Particle Collision Algorithm (MPCA) metaheuristic. However, it is necessary to address, beyond the prediction the uncertainty associated to the prediction. This paper is focused on two-fold. Firstly, to produce a monthly prediction for precipitation by neural network. Secondly, the neural network output is also designed to estimate the uncertainty related to neural prediction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Footnotes
This content is only visible if you are logged in and have the appropriate permissions.
Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
Climate Precipitation Prediction with Uncertainty Quantification by Self-configuring Neural Network
Authors
Juliana A. Anochi
Reynier Hernández Torres
Haroldo F. Campos Velho
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-53669-5_18