Skip to main content
Top
Published in: Meccanica 6/2016

04-11-2015

Closed-form solutions and uncertainty quantification for gravity-loaded beams

Authors: Korak Sarkar, Ranjan Ganguli, Debraj Ghosh, Isaac Elishakoff

Published in: Meccanica | Issue 6/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Typically, the cantilever non-uniform gravity-loaded Euler–Bernoulli beams are numerically modeled as the governing equation for free vibration analysis does not yield an exact solution. We show that, for certain polynomial variations of the mass and stiffness, there exists a fundamental closed form solution to the fourth order governing differential equation for gravity-loaded beams. An inverse problem approach is used to find an infinite number of such beams, with various mass and stiffness distributions, which share the same fundamental frequency. The derived distributions are demonstrated as test functions for a p-version finite element method. The functions can also be used to design gravity-loaded cantilever beams having a pre-specified fundamental natural frequency. Examples of such beams with rectangular cross section are presented. The bounds for the pre-specified fundamental frequency and its variation for beams of different lengths are also studied. In presence of uncertainty, this flexural stiffness is treated as a spatial random field. For known probability distributions of the natural frequencies, the corresponding distribution of this field is found analytically. This analytical solution can serve as a benchmark solution for different statistical simulation tools to find the probabilistic nature of the stiffness distribution for known probability distributions of the frequencies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Schäfer B (1985) Free vibrations of a gravity-loaded clamped-free beam. Ingenieur-archiv 55(1):66–80CrossRef Schäfer B (1985) Free vibrations of a gravity-loaded clamped-free beam. Ingenieur-archiv 55(1):66–80CrossRef
2.
go back to reference Ganesh R, Ganguli R (2013) Stiff string approximations in Rayleigh–Ritz method for rotating beams. Appl Math Comput 219(17):9282–9295MathSciNetMATH Ganesh R, Ganguli R (2013) Stiff string approximations in Rayleigh–Ritz method for rotating beams. Appl Math Comput 219(17):9282–9295MathSciNetMATH
3.
go back to reference Alley VL, Leadbetter SA (1963) Prediction and measurement of natural vibrations of multistage launch vehicles. AIAA J 1(2):374–379ADSCrossRef Alley VL, Leadbetter SA (1963) Prediction and measurement of natural vibrations of multistage launch vehicles. AIAA J 1(2):374–379ADSCrossRef
4.
go back to reference Krauthammer T (1987) A numerical study of wind-induced tower vibrations. Comput Struct 26(1):233–241CrossRef Krauthammer T (1987) A numerical study of wind-induced tower vibrations. Comput Struct 26(1):233–241CrossRef
5.
go back to reference Bracci JM, Reinhorn AM, Mander JB (1995) Seismic resistance of reinforced concrete frame structures designed for gravity loads: performance of structural system. ACI Struct J 92(5):597–610 Bracci JM, Reinhorn AM, Mander JB (1995) Seismic resistance of reinforced concrete frame structures designed for gravity loads: performance of structural system. ACI Struct J 92(5):597–610
6.
go back to reference Güler K (1998) Free vibrations and modes of chimneys on an elastic foundation. J Sound Vib 218(3):541–547ADSCrossRef Güler K (1998) Free vibrations and modes of chimneys on an elastic foundation. J Sound Vib 218(3):541–547ADSCrossRef
7.
go back to reference Chmielewski T, Górski P, Beirow B, Kretzschmar J (2005) Theoretical and experimental free vibrations of tall industrial chimney with flexibility of soil. Eng Struct 27(1):25–34CrossRef Chmielewski T, Górski P, Beirow B, Kretzschmar J (2005) Theoretical and experimental free vibrations of tall industrial chimney with flexibility of soil. Eng Struct 27(1):25–34CrossRef
8.
go back to reference Wang A-P, Lin Y-H (2007) Vibration control of a tall building subjected to earthquake excitation. J Sound Vib 299(4):757–773ADSCrossRef Wang A-P, Lin Y-H (2007) Vibration control of a tall building subjected to earthquake excitation. J Sound Vib 299(4):757–773ADSCrossRef
9.
go back to reference Taranath BS (2011) Structural analysis and design of tall buildings: steel and composite construction. CRC Press, Boca RatonCrossRef Taranath BS (2011) Structural analysis and design of tall buildings: steel and composite construction. CRC Press, Boca RatonCrossRef
10.
go back to reference Wang G, Wereley NM (2004) Free vibration analysis of rotating blades with uniform tapers. AIAA J 42(12):2429–2437ADSCrossRef Wang G, Wereley NM (2004) Free vibration analysis of rotating blades with uniform tapers. AIAA J 42(12):2429–2437ADSCrossRef
11.
go back to reference Yan S-X, Zhang Z-P, Wei D-J, Li X-F (2011) Bending vibration of rotating tapered cantilevers by integral equation method. AIAA J 49(4):872–876ADSCrossRef Yan S-X, Zhang Z-P, Wei D-J, Li X-F (2011) Bending vibration of rotating tapered cantilevers by integral equation method. AIAA J 49(4):872–876ADSCrossRef
12.
go back to reference Wei D, Liu Y, Xiang Z (2012) An analytical method for free vibration analysis of functionally graded beams with edge cracks. J Sound Vib 331(7):1686–1700ADSCrossRef Wei D, Liu Y, Xiang Z (2012) An analytical method for free vibration analysis of functionally graded beams with edge cracks. J Sound Vib 331(7):1686–1700ADSCrossRef
13.
go back to reference Kambampati S, Ganguli R, Mani V (2013) Rotating beams isospectral to axially loaded nonrotating uniform beams. AIAA J 51(5):1189–1202ADSCrossRef Kambampati S, Ganguli R, Mani V (2013) Rotating beams isospectral to axially loaded nonrotating uniform beams. AIAA J 51(5):1189–1202ADSCrossRef
14.
go back to reference Kim H, Yoo H Hee, Chung J (2013) Dynamic model for free vibration and response analysis of rotating beams. J Sound Vib 332(22):5917–5928ADSCrossRef Kim H, Yoo H Hee, Chung J (2013) Dynamic model for free vibration and response analysis of rotating beams. J Sound Vib 332(22):5917–5928ADSCrossRef
16.
go back to reference Vo TP, Thai H-T, Nguyen T-K, Inam F (2014) Static and vibration analysis of functionally graded beams using refined shear deformation theory. Meccanica 49(1):155–168MathSciNetCrossRefMATH Vo TP, Thai H-T, Nguyen T-K, Inam F (2014) Static and vibration analysis of functionally graded beams using refined shear deformation theory. Meccanica 49(1):155–168MathSciNetCrossRefMATH
17.
go back to reference Elishakoff I, Zaza N, Curtin J, Hashemi J (2014) Apparently first closed-form solution for vibration of functionally graded rotating beams. AIAA J 52(11):2587–2593ADSCrossRef Elishakoff I, Zaza N, Curtin J, Hashemi J (2014) Apparently first closed-form solution for vibration of functionally graded rotating beams. AIAA J 52(11):2587–2593ADSCrossRef
18.
go back to reference Rajasekaran S, Tochaei EN (2014) Free vibration analysis of axially functionally graded tapered Timoshenko beams using differential transformation element method and differential quadrature element method of lowest-order. Meccanica 49(4):995–1009MathSciNetCrossRefMATH Rajasekaran S, Tochaei EN (2014) Free vibration analysis of axially functionally graded tapered Timoshenko beams using differential transformation element method and differential quadrature element method of lowest-order. Meccanica 49(4):995–1009MathSciNetCrossRefMATH
19.
go back to reference Sarkar K, Ganguli R (2014) Analytical test functions for free vibration analysis of rotating non-homogeneous Timoshenko beams. Meccanica 49(6):1469–1477MathSciNetCrossRefMATH Sarkar K, Ganguli R (2014) Analytical test functions for free vibration analysis of rotating non-homogeneous Timoshenko beams. Meccanica 49(6):1469–1477MathSciNetCrossRefMATH
20.
go back to reference Bambill D, Rossit C, Felix D (2015) Free vibrations of stepped axially functionally graded Timoshenko beams. Meccanica 50(4):1073–1087MathSciNetCrossRef Bambill D, Rossit C, Felix D (2015) Free vibrations of stepped axially functionally graded Timoshenko beams. Meccanica 50(4):1073–1087MathSciNetCrossRef
21.
go back to reference Wattanasakulpong N, Charoensuk J (2015) Vibration characteristics of stepped beams made of FGM using differential transformation method. Meccanica 50(4):1089–1101MathSciNetCrossRef Wattanasakulpong N, Charoensuk J (2015) Vibration characteristics of stepped beams made of FGM using differential transformation method. Meccanica 50(4):1089–1101MathSciNetCrossRef
22.
go back to reference Paidoussis MP, Des Trois Maisons PE (1971) Free vibration of a heavy, damped, vertical cantilever. J Appl Mech 38:524CrossRef Paidoussis MP, Des Trois Maisons PE (1971) Free vibration of a heavy, damped, vertical cantilever. J Appl Mech 38:524CrossRef
23.
go back to reference Caddemi S, Caliò I (2009) Exact closed-form solution for the vibration modes of the Euler–Bernoulli beam with multiple open cracks. J Sound Vib 327(3):473–489ADSCrossRef Caddemi S, Caliò I (2009) Exact closed-form solution for the vibration modes of the Euler–Bernoulli beam with multiple open cracks. J Sound Vib 327(3):473–489ADSCrossRef
24.
go back to reference Liu M-F, Chang T-P (2010) Closed form expression for the vibration problem of a transversely isotropic magneto-electro-elastic plate. J Appl Mech 77(2):024502CrossRef Liu M-F, Chang T-P (2010) Closed form expression for the vibration problem of a transversely isotropic magneto-electro-elastic plate. J Appl Mech 77(2):024502CrossRef
25.
go back to reference Stojanovic V, Kozic P, Janevski G (2013) Exact closed-form solutions for the natural frequencies and stability of elastically connected multiple beam system using Timoshenko and high-order shear deformation theory. J Sound Vib 332(3):563–576ADSCrossRef Stojanovic V, Kozic P, Janevski G (2013) Exact closed-form solutions for the natural frequencies and stability of elastically connected multiple beam system using Timoshenko and high-order shear deformation theory. J Sound Vib 332(3):563–576ADSCrossRef
26.
go back to reference Sarkar K, Ganguli R (2013) Closed-form solutions for non-uniform Euler–Bernoulli free-free beams. J Sound Vib 332(23):6078–6092ADSCrossRef Sarkar K, Ganguli R (2013) Closed-form solutions for non-uniform Euler–Bernoulli free-free beams. J Sound Vib 332(23):6078–6092ADSCrossRef
29.
go back to reference Naguleswaran S (1991) Vibration of a vertical cantilever with and without axial freedom at clamped end. J Sound Vib 146(2):191–198ADSCrossRef Naguleswaran S (1991) Vibration of a vertical cantilever with and without axial freedom at clamped end. J Sound Vib 146(2):191–198ADSCrossRef
30.
go back to reference Naguleswaran S (2004) Transverse vibration of an uniform Euler–Bernoulli beam under linearly varying axial force. J Sound Vib 275(1):47–57ADSCrossRefMATH Naguleswaran S (2004) Transverse vibration of an uniform Euler–Bernoulli beam under linearly varying axial force. J Sound Vib 275(1):47–57ADSCrossRefMATH
31.
go back to reference Virgin LN, Santillan ST, Holland DB (2007) Effect of gravity on the vibration of vertical cantilevers. Mech Res Commun 34(3):312–317CrossRefMATH Virgin LN, Santillan ST, Holland DB (2007) Effect of gravity on the vibration of vertical cantilevers. Mech Res Commun 34(3):312–317CrossRefMATH
32.
go back to reference Hijmissen JW, Van Horssen WT (2007) On aspects of damping for a vertical beam with a tuned mass damper at the top. Nonlinear Dyn 50(1–2):169–190MathSciNetCrossRefMATH Hijmissen JW, Van Horssen WT (2007) On aspects of damping for a vertical beam with a tuned mass damper at the top. Nonlinear Dyn 50(1–2):169–190MathSciNetCrossRefMATH
33.
go back to reference Xi LY, Li XF, Tang GJ (2013) Free vibration of standing and hanging gravity-loaded Rayleigh cantilevers. Int J Mech Sci 66:233–238CrossRef Xi LY, Li XF, Tang GJ (2013) Free vibration of standing and hanging gravity-loaded Rayleigh cantilevers. Int J Mech Sci 66:233–238CrossRef
35.
go back to reference Becquet R, Elishakoff I (2001) Class of analytical closed-form polynomial solutions for guided-pinned inhomogeneous beams. Chaos Solitons Fractals 12(8):1509–1534ADSMathSciNetCrossRefMATH Becquet R, Elishakoff I (2001) Class of analytical closed-form polynomial solutions for guided-pinned inhomogeneous beams. Chaos Solitons Fractals 12(8):1509–1534ADSMathSciNetCrossRefMATH
36.
go back to reference Elishakoff I, Becquet R (2000) Closed-form solutions for natural frequency for inhomogeneous beams with one sliding support and the other pinned. J Sound Vib 238(3):529–539ADSCrossRef Elishakoff I, Becquet R (2000) Closed-form solutions for natural frequency for inhomogeneous beams with one sliding support and the other pinned. J Sound Vib 238(3):529–539ADSCrossRef
37.
go back to reference Elishakoff I, Candan S (2001) Apparently first closed-form solution for vibrating: inhomogeneous beams. Int J Solids Struct 38(19):3411–3441MathSciNetCrossRefMATH Elishakoff I, Candan S (2001) Apparently first closed-form solution for vibrating: inhomogeneous beams. Int J Solids Struct 38(19):3411–3441MathSciNetCrossRefMATH
38.
go back to reference Yamazaki F, Member A, Shinozuka M, Dasgupta G (1988) Neumann expansion for stochastic finite element analysis. J Eng Mech 114(8):1335–1354CrossRef Yamazaki F, Member A, Shinozuka M, Dasgupta G (1988) Neumann expansion for stochastic finite element analysis. J Eng Mech 114(8):1335–1354CrossRef
39.
go back to reference Shinozuka M, Astill CJ (1972) Random eigenvalue problems in structural analysis. AIAA J 10(4):456–462ADSCrossRefMATH Shinozuka M, Astill CJ (1972) Random eigenvalue problems in structural analysis. AIAA J 10(4):456–462ADSCrossRefMATH
40.
go back to reference Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics. Elsevier, AmsterdamMATH Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics. Elsevier, AmsterdamMATH
41.
go back to reference Choi S-K, Grandhi RV, Canfield RA, Pettit CL (2004) Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J 42(6):1191–1198ADSCrossRef Choi S-K, Grandhi RV, Canfield RA, Pettit CL (2004) Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J 42(6):1191–1198ADSCrossRef
42.
go back to reference Huang S, Mahadevan S, Rebba R (2007) Collocation-based stochastic finite element analysis for random field problems. Probab Eng Mech 22(2):194–205CrossRef Huang S, Mahadevan S, Rebba R (2007) Collocation-based stochastic finite element analysis for random field problems. Probab Eng Mech 22(2):194–205CrossRef
43.
go back to reference Vom Scheidt J, Purkert W (1983) Random eigenvalue problems. North Holland, New YorkMATH Vom Scheidt J, Purkert W (1983) Random eigenvalue problems. North Holland, New YorkMATH
44.
go back to reference Ghanem R, Ghosh D (2007) Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition. Int J Numer Methods Eng 72(4):486–504MathSciNetCrossRefMATH Ghanem R, Ghosh D (2007) Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition. Int J Numer Methods Eng 72(4):486–504MathSciNetCrossRefMATH
46.
go back to reference Wolfram S (1999) The Mathematica Book. Cambridge University Press, CambridgeMATH Wolfram S (1999) The Mathematica Book. Cambridge University Press, CambridgeMATH
47.
go back to reference Udupa KM, Varadan TK (1990) Hierarchical finite element method for rotating beams. J Sound Vib 138(3):447–456ADSCrossRef Udupa KM, Varadan TK (1990) Hierarchical finite element method for rotating beams. J Sound Vib 138(3):447–456ADSCrossRef
48.
go back to reference Hodges DY, Rutkowski MY (1981) Free-vibration analysis of rotating beams by a variable-order finite-element method. AIAA J 19(11):1459–1466ADSCrossRefMATH Hodges DY, Rutkowski MY (1981) Free-vibration analysis of rotating beams by a variable-order finite-element method. AIAA J 19(11):1459–1466ADSCrossRefMATH
49.
go back to reference Gunda JB, Singh AP, Chhabra PS, Ganguli R (2007) Free vibration analysis of rotating tapered blades using Fourier-\(p\) super element. Struct Eng Mech 27(2):243–257CrossRef Gunda JB, Singh AP, Chhabra PS, Ganguli R (2007) Free vibration analysis of rotating tapered blades using Fourier-\(p\) super element. Struct Eng Mech 27(2):243–257CrossRef
50.
go back to reference Vinod KG, Gopalakrishnan S, Ganguli R (2007) Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements. Int J Solids Struct 44(18):5875–5893CrossRefMATH Vinod KG, Gopalakrishnan S, Ganguli R (2007) Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements. Int J Solids Struct 44(18):5875–5893CrossRefMATH
51.
go back to reference Sarkar K, Ganguli R (2013) Rotating beams and non-rotating beams with shared eigenpair for pinned-free boundary condition. Meccanica 48(7):1661–1676MathSciNetCrossRefMATH Sarkar K, Ganguli R (2013) Rotating beams and non-rotating beams with shared eigenpair for pinned-free boundary condition. Meccanica 48(7):1661–1676MathSciNetCrossRefMATH
52.
go back to reference Bartle RG, Sherbert DR (2000) Introduction to real analysis. Wiley, New YorkMATH Bartle RG, Sherbert DR (2000) Introduction to real analysis. Wiley, New YorkMATH
Metadata
Title
Closed-form solutions and uncertainty quantification for gravity-loaded beams
Authors
Korak Sarkar
Ranjan Ganguli
Debraj Ghosh
Isaac Elishakoff
Publication date
04-11-2015
Publisher
Springer Netherlands
Published in
Meccanica / Issue 6/2016
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0314-x

Other articles of this Issue 6/2016

Meccanica 6/2016 Go to the issue

Premium Partners