Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 9/2022

05-07-2022 | Original Article

Clustering mixed type data: a space structure-based approach

Authors: Feijiang Li, Yuhua Qian, Jieting Wang, Furong Peng, Jiye Liang

Published in: International Journal of Machine Learning and Cybernetics | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Clustering mixed type data is important for the areas such as knowledge discovery and machine learning. Although many clustering algorithms have been developed for mixed type data, clustering mixed type data is still a challenging task. The challenges mainly come from the fact that the numerical attributes and categorical attributes of mixed type data are not in the same space. Most of the mixed data clustering methods handle the two types of attributes separately. The gap between the numerical attributes and categorical attributes is not handled very well. To handle the above issues, we expand the space structure representation scheme for categorical data to mixed type data. In the new scheme, all the attributes of the mixed type data are expressed as the numerical type, which is in a Euclidean space. In addition, we propose an accelerated approximate space structure based on the Nyström method, which reduces the time cost and memory cost of constructing a space structure. We then propose general frameworks based on the space structure data (SBM) and accelerated approximate space structure (Ap-SBM) for mixed type data clustering. Experimental analyses reflect the ability of the space structure to express the original mixed type data and the ability of the accelerated approximate space structure to express the space structure. The experimental results on thirteen mixed type data sets from UCI show superiority of the proposed frameworks compared with the other six representative mixed type data clustering algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRef Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRef
2.
go back to reference Vegapons S, Ruizshulcloper J (2011) A survey of clustering ensemble algorithms. Int J Pattern Recognit Artif Intell 25(03):337–372MathSciNetCrossRef Vegapons S, Ruizshulcloper J (2011) A survey of clustering ensemble algorithms. Int J Pattern Recognit Artif Intell 25(03):337–372MathSciNetCrossRef
3.
go back to reference Li F, Qian Y, Wang J, Dang C, Liu B (2018) Cluster’s quality evaluation and selective clustering ensemble. ACM Trans Knowl Discov Data 12(5):60CrossRef Li F, Qian Y, Wang J, Dang C, Liu B (2018) Cluster’s quality evaluation and selective clustering ensemble. ACM Trans Knowl Discov Data 12(5):60CrossRef
4.
go back to reference Li F, Qian Y, Wang J, Liang J (2017) Multigranulation information fusion: a dempster-shafer evidence theory-based clustering ensemble method. Inf Sci 378:389–409MATHCrossRef Li F, Qian Y, Wang J, Liang J (2017) Multigranulation information fusion: a dempster-shafer evidence theory-based clustering ensemble method. Inf Sci 378:389–409MATHCrossRef
5.
go back to reference Macqueen J (1965) Some methods for classification and analysis of multivariate observations. In: Proceedings of Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 Macqueen J (1965) Some methods for classification and analysis of multivariate observations. In: Proceedings of Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297
7.
go back to reference Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef
8.
go back to reference Aggarwal CC, Procopiuc CM, Yu PS (2002) Finding localized associations in market basket data. IEEE Trans Knowl Data Eng 14(1):51–62CrossRef Aggarwal CC, Procopiuc CM, Yu PS (2002) Finding localized associations in market basket data. IEEE Trans Knowl Data Eng 14(1):51–62CrossRef
9.
go back to reference Chen H, Chuang K, Chen M (2008) On data labeling for clustering categorical data. IEEE Trans Knowl Data Eng 20(11):1458–1472CrossRef Chen H, Chuang K, Chen M (2008) On data labeling for clustering categorical data. IEEE Trans Knowl Data Eng 20(11):1458–1472CrossRef
10.
go back to reference Huang Z (1997) A fast clustering algorithm to cluster very large categorical data sets in data mining. Research Issues on Data Mining and Knowledge Discovery 1–8 Huang Z (1997) A fast clustering algorithm to cluster very large categorical data sets in data mining. Research Issues on Data Mining and Knowledge Discovery 1–8
11.
go back to reference Qian Y, Liang J, Pedrycz W, Dang C (2010) Positive approximation: an accelerator for attribute reduction in rough set theory. Artif Intell 174(9):597–618MathSciNetMATHCrossRef Qian Y, Liang J, Pedrycz W, Dang C (2010) Positive approximation: an accelerator for attribute reduction in rough set theory. Artif Intell 174(9):597–618MathSciNetMATHCrossRef
12.
go back to reference Bai L, Liang J, Dang C, Cao F (2013) The impact of cluster representatives on the convergence of the k-modes type clustering. IEEE Trans Pattern Anal Mach Intell 35(6):1509–1522CrossRef Bai L, Liang J, Dang C, Cao F (2013) The impact of cluster representatives on the convergence of the k-modes type clustering. IEEE Trans Pattern Anal Mach Intell 35(6):1509–1522CrossRef
13.
go back to reference Hunt L, Jorgensen M (2011) Clustering mixed data. Wiley Interdisciplinary Rev Data Mining Knowledge Discovery 1(4):352–361CrossRef Hunt L, Jorgensen M (2011) Clustering mixed data. Wiley Interdisciplinary Rev Data Mining Knowledge Discovery 1(4):352–361CrossRef
14.
go back to reference Blomstedt P, Tang J, Xiong J, Granlund C, Corander J (2015) A bayesian predictive model for clustering data of mixed discrete and continuous type. IEEE Trans Pattern Anal Mach Intell 37(3):489–498CrossRef Blomstedt P, Tang J, Xiong J, Granlund C, Corander J (2015) A bayesian predictive model for clustering data of mixed discrete and continuous type. IEEE Trans Pattern Anal Mach Intell 37(3):489–498CrossRef
15.
go back to reference Lam D, Wei M, Wunsch D (2017) Clustering data of mixed categorical and numerical type with unsupervised feature learning. IEEE Access 3(2):1605–1613 Lam D, Wei M, Wunsch D (2017) Clustering data of mixed categorical and numerical type with unsupervised feature learning. IEEE Access 3(2):1605–1613
16.
go back to reference Ni X, Quadrianto N, Wang Y, Chen C (2017) Composing tree graphical models with persistent homology features for clustering mixed-type data. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2622–2631 Ni X, Quadrianto N, Wang Y, Chen C (2017) Composing tree graphical models with persistent homology features for clustering mixed-type data. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2622–2631
17.
go back to reference Jeris C, Jeris C, Jeris C, Jeris C, Jeris C (2001) A robust and scalable clustering algorithm for mixed type attributes in large database environment. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 263–268 Jeris C, Jeris C, Jeris C, Jeris C, Jeris C (2001) A robust and scalable clustering algorithm for mixed type attributes in large database environment. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 263–268
18.
go back to reference Hsu C, Chen C, Su Y (2007) Hierarchical clustering of mixed data based on distance hierarchy. Inf Sci 177(20):4474–4492CrossRef Hsu C, Chen C, Su Y (2007) Hierarchical clustering of mixed data based on distance hierarchy. Inf Sci 177(20):4474–4492CrossRef
19.
go back to reference Li C, Biswas G (2002) Unsupervised learning with mixed numeric and nominal data. IEEE Trans Knowl Data Eng 4:673–690CrossRef Li C, Biswas G (2002) Unsupervised learning with mixed numeric and nominal data. IEEE Trans Knowl Data Eng 4:673–690CrossRef
20.
go back to reference Hsu C, Huang W (2016) Integrated dimensionality reduction technique for mixed-type data involving categorical values. Appl Soft Comput 43:199–209CrossRef Hsu C, Huang W (2016) Integrated dimensionality reduction technique for mixed-type data involving categorical values. Appl Soft Comput 43:199–209CrossRef
21.
go back to reference Manuela H, Dominic E, Annette K-S (2017) Clustering of samples and variables with mixed-type data. PLoS ONE 12(11):0188274 Manuela H, Dominic E, Annette K-S (2017) Clustering of samples and variables with mixed-type data. PLoS ONE 12(11):0188274
22.
go back to reference Chen J, He H (2016) A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data. Inf Sci 345(C):271–293CrossRef Chen J, He H (2016) A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data. Inf Sci 345(C):271–293CrossRef
23.
go back to reference Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863CrossRef Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863CrossRef
24.
go back to reference Mao J, Jain AK (1996) A self-organizing network for hyperellipsoidal clustering. IEEE Trans Neural Networks 7(1):16CrossRef Mao J, Jain AK (1996) A self-organizing network for hyperellipsoidal clustering. IEEE Trans Neural Networks 7(1):16CrossRef
25.
go back to reference Jarvis RA, Patrick EA (2006) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput C–22(11):1025–1034CrossRef Jarvis RA, Patrick EA (2006) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput C–22(11):1025–1034CrossRef
26.
go back to reference Michalski RS, Stepp RE (1983) Automated construction of classifications: conceptual clustering versus numerical taxonomy. IEEE Trans Pattern Anal Mach Intell 5(4):396–410CrossRef Michalski RS, Stepp RE (1983) Automated construction of classifications: conceptual clustering versus numerical taxonomy. IEEE Trans Pattern Anal Mach Intell 5(4):396–410CrossRef
27.
go back to reference Wang P, Yao Y (2018) Ce3: a three-way clustering method based on mathematical morphology. Knowl-Based Syst 155:54–65CrossRef Wang P, Yao Y (2018) Ce3: a three-way clustering method based on mathematical morphology. Knowl-Based Syst 155:54–65CrossRef
28.
go back to reference Wang P, Shi H, Yang X, Mi J (2019) Three-way k-means: integrating k-means and three-way decision. Int J Mach Learn Cybern 10:2767–2777CrossRef Wang P, Shi H, Yang X, Mi J (2019) Three-way k-means: integrating k-means and three-way decision. Int J Mach Learn Cybern 10:2767–2777CrossRef
29.
go back to reference Qian Y, Li F, Liang J, Liu B, Dang C (2016) Space structure and clustering of categorical data. IEEE Transact Neural Networks Learn Syst 27(10):2047–2059MathSciNetCrossRef Qian Y, Li F, Liang J, Liu B, Dang C (2016) Space structure and clustering of categorical data. IEEE Transact Neural Networks Learn Syst 27(10):2047–2059MathSciNetCrossRef
30.
go back to reference Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Disc 2(3):283–304CrossRef Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Disc 2(3):283–304CrossRef
31.
go back to reference Ji J, Pang W, Zhou C, Han X, Wang Z (2012) A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data. Knowl-Based Syst 30:129–135CrossRef Ji J, Pang W, Zhou C, Han X, Wang Z (2012) A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data. Knowl-Based Syst 30:129–135CrossRef
32.
go back to reference Zhao W, Dai W, Tang C (2007) K-centers algorithm for clustering mixed type data. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 1140–1147. Springer Zhao W, Dai W, Tang C (2007) K-centers algorithm for clustering mixed type data. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 1140–1147. Springer
33.
go back to reference Huang Z (1997) Clustering large data sets with mixed numeric and categorical values. In: Proceedings of the 1st Pacific-asia Conference on Knowledge Discovery and Data Mining, pp. 21–34. Singapore Huang Z (1997) Clustering large data sets with mixed numeric and categorical values. In: Proceedings of the 1st Pacific-asia Conference on Knowledge Discovery and Data Mining, pp. 21–34. Singapore
34.
go back to reference Goodall DW (1966) A new similarity index based on probability. Biometrics 22(4):882CrossRef Goodall DW (1966) A new similarity index based on probability. Biometrics 22(4):882CrossRef
35.
go back to reference Hsu C, Wang S (2006) An integrated framework for visualized and exploratory pattern discovery in mixed data. IEEE Trans Knowl Data Eng 18(2):161–173CrossRef Hsu C, Wang S (2006) An integrated framework for visualized and exploratory pattern discovery in mixed data. IEEE Trans Knowl Data Eng 18(2):161–173CrossRef
36.
go back to reference Hsu C, Chen Y (2007) Mining of mixed data with application to catalog marketing. Expert Syst Appl 32(1):12–23CrossRef Hsu C, Chen Y (2007) Mining of mixed data with application to catalog marketing. Expert Syst Appl 32(1):12–23CrossRef
37.
go back to reference Liang J, Zhao X, Li D, Cao F, Dang C (2012) Determining the number of clusters using information entropy for mixed data. Pattern Recogn 45(6):2251–2265MATHCrossRef Liang J, Zhao X, Li D, Cao F, Dang C (2012) Determining the number of clusters using information entropy for mixed data. Pattern Recogn 45(6):2251–2265MATHCrossRef
38.
go back to reference Rnyi A (1961) On measures of entropy and information. Proc.fourth Berkeley Symp.on Math.statist. & Prob.univ.of Calif 1(5073):547–561 Rnyi A (1961) On measures of entropy and information. Proc.fourth Berkeley Symp.on Math.statist. & Prob.univ.of Calif 1(5073):547–561
39.
go back to reference Liang J, Chin K, Dang C, Yam RC (2002) A new method for measuring uncertainty and fuzziness in rough set theory. Int J Gen Syst 31(4):331–342MathSciNetMATHCrossRef Liang J, Chin K, Dang C, Yam RC (2002) A new method for measuring uncertainty and fuzziness in rough set theory. Int J Gen Syst 31(4):331–342MathSciNetMATHCrossRef
40.
go back to reference Cheung Y, Jia H (2013) Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing cluster number. Pattern Recogn 46(8):2228–2238MATHCrossRef Cheung Y, Jia H (2013) Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing cluster number. Pattern Recogn 46(8):2228–2238MATHCrossRef
41.
go back to reference Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27(4):857–871CrossRef Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27(4):857–871CrossRef
42.
go back to reference Wangchamhan T, Chiewchanwattana S, Sunat K (2017) Efficient algorithms based on the k-means and chaotic league championship algorithm for numeric, categorical, and mixed-type data clustering. Expert Syst Appl 90:146–167CrossRef Wangchamhan T, Chiewchanwattana S, Sunat K (2017) Efficient algorithms based on the k-means and chaotic league championship algorithm for numeric, categorical, and mixed-type data clustering. Expert Syst Appl 90:146–167CrossRef
44.
go back to reference Stanfill C, Waltz D (1986) Toward memory-based reasoning. Comm Acm 29(12):1213–1228CrossRef Stanfill C, Waltz D (1986) Toward memory-based reasoning. Comm Acm 29(12):1213–1228CrossRef
45.
go back to reference Yuan K, Xu W, Li W, Weiping D (2022) An incremental learning mechanism for object classification based on progressive fuzzy three-way concept. Inf Sci 584:127–147CrossRef Yuan K, Xu W, Li W, Weiping D (2022) An incremental learning mechanism for object classification based on progressive fuzzy three-way concept. Inf Sci 584:127–147CrossRef
46.
go back to reference Li M, Chen M, Xu W (2019) Double-quantitative multigranulation decision-theoretic rough fuzzy set model. Int J Mach Learn Cybern 10:3225–3244CrossRef Li M, Chen M, Xu W (2019) Double-quantitative multigranulation decision-theoretic rough fuzzy set model. Int J Mach Learn Cybern 10:3225–3244CrossRef
47.
go back to reference Xu W, Yu J (2017) A novel approach to information fusion in multi-source datasets: A granular computing viewpoint. Inf Sci 378:410–423MATHCrossRef Xu W, Yu J (2017) A novel approach to information fusion in multi-source datasets: A granular computing viewpoint. Inf Sci 378:410–423MATHCrossRef
48.
go back to reference Chatzis SP (2011) A fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional. Expert Syst Appl 38(7):8684–8689CrossRef Chatzis SP (2011) A fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional. Expert Syst Appl 38(7):8684–8689CrossRef
49.
go back to reference Zheng Z, Gong M, Ma J, Jiao L, Wu Q (2010) Unsupervised evolutionary clustering algorithm for mixed type data. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1–8 Zheng Z, Gong M, Ma J, Jiao L, Wu Q (2010) Unsupervised evolutionary clustering algorithm for mixed type data. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1–8
50.
go back to reference Ji J, Bai T, Zhou C, Ma C, Wang Z (2013) An improved k-prototypes clustering algorithm for mixed numeric and categorical data. Neurocomputing 120:590–596CrossRef Ji J, Bai T, Zhou C, Ma C, Wang Z (2013) An improved k-prototypes clustering algorithm for mixed numeric and categorical data. Neurocomputing 120:590–596CrossRef
51.
52.
go back to reference Williams C, Seeger M (2001) Using the nyström method to speed up kernel machines. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 682–688 Williams C, Seeger M (2001) Using the nyström method to speed up kernel machines. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 682–688
53.
go back to reference Charless F, Serge B, Fan C, Jitendra M (2019) Spectral grouping using the nystrm method. IEEE Trans Pattern Anal Mach Intell 26(2):214–25 Charless F, Serge B, Fan C, Jitendra M (2019) Spectral grouping using the nystrm method. IEEE Trans Pattern Anal Mach Intell 26(2):214–25
54.
go back to reference Chen W-Y, Song Y, Bai H, Lin C-J, Chang EY (2011) Parallel spectral clustering in distributed systems. IEEE Trans Pattern Anal Mach Intell 33(3):568–586CrossRef Chen W-Y, Song Y, Bai H, Lin C-J, Chang EY (2011) Parallel spectral clustering in distributed systems. IEEE Trans Pattern Anal Mach Intell 33(3):568–586CrossRef
55.
go back to reference Cai D, Chen X (2015) Large scale spectral clustering via landmark-based sparse representation. IEEE Transact Cybern 45(8):1669–1680CrossRef Cai D, Chen X (2015) Large scale spectral clustering via landmark-based sparse representation. IEEE Transact Cybern 45(8):1669–1680CrossRef
56.
go back to reference Liang J, Zhao X, Li D, Cao F, Dang C (2012) Determining the number of clusters using information entropy for mixed data. Pattern Recogn 45:2251–2265MATHCrossRef Liang J, Zhao X, Li D, Cao F, Dang C (2012) Determining the number of clusters using information entropy for mixed data. Pattern Recogn 45:2251–2265MATHCrossRef
58.
go back to reference Reshef DN, Reshef YA, Finucane HK, Grossman SR, Mcvean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524MATHCrossRef Reshef DN, Reshef YA, Finucane HK, Grossman SR, Mcvean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524MATHCrossRef
59.
go back to reference Yang Y (1999) An evaluation of statistical approaches to yext categorization. Inf Retrieval 1:69–90CrossRef Yang Y (1999) An evaluation of statistical approaches to yext categorization. Inf Retrieval 1:69–90CrossRef
Metadata
Title
Clustering mixed type data: a space structure-based approach
Authors
Feijiang Li
Yuhua Qian
Jieting Wang
Furong Peng
Jiye Liang
Publication date
05-07-2022
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 9/2022
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-022-01602-x

Other articles of this Issue 9/2022

International Journal of Machine Learning and Cybernetics 9/2022 Go to the issue